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Introduction

Motivation

- Least Squares Support Vector Regression (LS-SVR) is a widely used
tool for time series forecasting, control and system identification.

- The Ordinary Least Squares (OLS) algorithm is too sensitive to the
presence of outliers.

- Most of real-world data contains non-Gaussian noise.

- Lack of work on LS-SVR robust variants for system identification
tasks.
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Introduction

Objectives

1 - Propose a novel recursive and robust LS-SVR solution for regression
problems.

2 - Evaluate the behavior of the proposed approach in system
identification tasks, using infinite steps ahead prediction on both
artificial and real data.

3 - Compare the performance of our method to some robust variants for
LS-SVR models:

a - WLS-SVR: Weighted Least Squares Support Vector Regression;
b - IRLS-SVR: Iteratively Reweighted Least Squares Support Vector

Regression.
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Nonlinear System Identification

- Nonlinear autoregressive with exogenous inputs (NARX) model:

yi = mi + εi , mi = g(xi), εi ∼ N (εi |0, σ2n), (1)

xi = [yi−1, yi−2, · · · , yi−Ly , ui−1, ui−2, · · · , ui−Lu ]T , (2)

where xi ∈ RP is the input vector, ui ∈ R is the control input and
yi ∈ R is the output.

- After N instants, we have the dataset D = (xi , yi)|Ni=1 = (X ,y),
where X ∈ RN×P is the regressor matrix and y = [y1, . . . , yN ].

- Given a new instant j , the prediction for test data follows

ŷj = f (xj ) + εj , (3)

xj = [ŷj−1, ŷj−2, · · · , ŷj−Ly , uj−1, uj−2, · · · , uj−Lu ]T , (4)

where ŷj is the j -th estimated noisy output.
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Evaluated Models: LS-SVR

- For the estimation dataset {(xn , yn)}|Nn=1, the goal in a regression
problem is to search for a function f (·) that takes the form

f (x ) = 〈w , ϕ(x )〉+ b, (5)

where ϕ(·) : Rp → Rph is a nonlinear map, 〈·, ·〉 denotes dot product,
w ∈ Rph is a vector of weights and b ∈ R is a bias.

- The parameter estimation problem leads to the minimization of

J (w , e) =
1

2
‖w‖22 + C

1

2

N∑
n=1

e2n , (6)

subject to

yn = 〈w , ϕ(xn)〉+ b + en , n = 1, 2, . . . ,N (7)

where en = yn − f (xn) is the n-th error and C > 0 is a regularization
parameter.
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Evaluated Models: LS-SVR

- After the application of Lagrangian function and the respective
conditions for optimality, the dual problem corresponds to[

0 1T

1 Ω + C−1I

]
︸ ︷︷ ︸

A

[
b
α0

]
︸ ︷︷ ︸

α

=

[
0
y0

]
︸︷︷︸

y

, (8)

where α0 ∈ RN is the vector of Lagrange multipliers, Ω ∈ RN×N is
the kernel matrix (Ωi ,j = k(xi ,xj )) and k(·, ·) is the kernel function.

- The solution for α is obtained by OLS algorithm as

α = (ATA)−1ATy . (9)

- The resulting LS-SVR model for nonlinear regression is given by

f (x ) =

N∑
n=1

αnk(x ,xn) + b. (10)
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Evaluated Models: WLS-SVR

- The WLS-SVR model is obtained by the minimization of the
functional

J (w , e) =
1

2
‖w‖22 + C

1

2

N∑
n=1

vne
2
n , (11)

where v = (v1, . . . , vn)T is a vector of weights associated with the
error variables.

- The WLS-SVR solution is provided by solving the linear system
Avα = y , also using OLS algorithm

α = (AT
v Av )−1AT

v y , (12)

where

Av =

[
0 1T

1 Ω + C−1V

]
, V = diag

{
1

v1
, . . . ,

1

vN

}
. (13)
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Evaluated Models: WLS-SVR

- The weights vn are determined from Hampel weight function

vn =


1 if |en/ŝ| ≤ c1,
c2−|en/ŝ|
c2−c1 if c1 < |en/ŝ| ≤ c2,

10−4 otherwise,

(14)

where ŝ = IQR/1.349 1 is a robust estimate of the standard deviation
of the error variables en , c1 = 2.5 and c2 = 3.0.

1IQR stands for InterQuantile Range, which is the difference between the 75th
percentile and the 25th percentile.
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Evaluated Models: IRLS-SVR

- The weighting procedure for WLS-SVR model can be repeated
iteratively giving rise to IRLS-SVR model.

- At each iteration i , it is necessary to solve a linear system

A
(i)
v α(i) = y , where

A(i)
v =

[
0 1T

1 Ω + C−1Vi

]
, V (i) = diag

{
1

v
(i)
1

, . . . ,
1

v
(i)
N

}
. (15)

- The resulting model at the i -th iteration is given by

f (i)(x ) =

N∑
n=1

α(i)
n k(x ,xn) + b(i). (16)

- The stopping criterion is maxn(|α(i)
n − α(i−1)

n |) ≤ 10−3.
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The Proposed Approach: RLM-SVR

- The proposed method works with the same optimization problem as
the standard LS-SVR model. Then, we have to solve the linear system[

0 1T

1 Ω + C−1I

]
︸ ︷︷ ︸

A

[
b
α0

]
︸ ︷︷ ︸

α

=

[
0
y0

]
︸︷︷︸

y

. (17)

- The idea is to solve (17) for the parameter vector α by using the
Recursive Least M-Estimate (RLM) 2 algorithm.

- For each vector an ∈ RN+1 from the above matrix
A = [a1, . . . ,an , . . . ,aN+1], we should apply the following recursive
procedure

2The RLM rule is a robust variant of the standard Recursive Least Squares (RLS)
algorithm, which uses M-estimators to handle outliers.
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The Proposed Approach: RLM-SVR

1 - Calculate the a priori error: en = yn −αT
n−1an , where α0 = 0;

2 - Calculate the estimative of the error variance σ2n as

σ̂2n = λe σ̂
2
n−1 + c(1− λe)med(Fn), (18)

where 0� λe ≤ 1 is a forgetting factor, med(·) is the median
operator, Fn = {e2n , e2n−1, . . . , e2n−Nw+1} and
c = 1.483(1 + 5/(Nw − 1));

3 - For the threshold parameters ξ1 = 1.96σ̂i , ξ2 = 2.24σ̂i and
ξ3 = 2.576σ̂i , determine the Hampel’s weight function as

q(en) =


1 0 ≤ |en | < ξ1,
ξ1sign(en )

en
ξ1 ≤ |en | < ξ2,

ξ1(ξ3−|en |)
ξ3−ξ2

sign(en )
en

ξ2 ≤ |en | < ξ3,

0 otherwise,

(19)
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The Proposed Approach: RLM-SVR

4 - Apply the RLM algorithm using the following equations

Sn = λ−1(I − gna
T
n )Sn−1, (20)

gn =
q(en)Sn−1an

λ+ q(en)aT
n Sn−1an

, (21)

αn = αn−1 + (yn − aT
n αn−1)gn , (22)

where Sn is the inverse of the M-estimate correlation matrix of an ,
gn is the M-estimate gain vector and 0� λ ≤ 1 is a forgetting factor;

5 - The cycle from the step 1 to 4, over all the data samples, should be
repeated for Ne > 1 times. In this paper, we assume Ne = 20.
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Simulations and Discussion

Datasets

- The artificial datasets were incrementally corrupted with a number of
outliers equal to 2.5%, 5% e 10% of the estimation samples.

- A uniformly distributed value U (−My ,+My) was added to each
randomly chosen sample, where My is the maximum absolute output
value.

Dataset estimation samples test samples noise

Artificial 1 150 150 N (0, 0.0025)
Artificial 2 300 100 N (0, 0.29)
Real dataset 512 512 ?
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Simulations and Discussion

Artificial 1

yi = yi−1 − 0.5 tanh(yi−1 + u3
i−1)

ui ∼ N (ui |0, 1), − 1 ≤ ui ≤ 1, for both estimation and test data.

Figure: RMSE with test samples of Artificial 1 dataset in free simulation.
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Simulations and Discussion

Artificial 2

yi =
yi−1yi−2(yi−1 + 2.5)

1 + y2i−1 + y2i−2
+ ui−1,

ui = U (−2, 2) for estimation data and ui = sin(2πi/25) for test data.

Figure: RMSE with test samples of Artificial 2 dataset in free simulation.
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Simulations and Discussion

Wing flutter

- This data set is available in
http://homes.esat.kuleuven.be/∼smc/daisy/daisydata.html.

- It corresponds to a SISO (Single Input Single Output) system, which
input is highly colored.

Figure: RMSE with test samples of wing flutter dataset in free simulation.
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Conclusion

- It was proposed an outlier-robust recursive strategy to solve the
parameter estimation problem of the standard LS-SVR model.

- The new approach, called RLM-SVR, is a robust variant of the RLS
algorithm which uses M-estimators.

- Application in system identification tasks using infinite step ahead
prediction in the presence of outliers.

- Performance comparison with two robust LS-SVR variants, WLS-SVR
and IRLS-SVR.

- For all used datasets, the worst results achieved by the RLM-SVR
model (maximum RMSE values) were better than the other methods.

- For outlier-free scenarios, the RLM-SVR model performed similarly to
the others.
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