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Goals and contributions

Introduce the Minimal Learning Machine (MLM) a

Propose a MLM for missing valued datasets using ESD

aA. H. Souza Junior, F. Corona, Y. Miche, A. Lendasse, G. Barreto, and
O. Simula, “Minimal learning machine: A new distance-based method for
supervised learning”, in IWANN’13, LNCS 7902, pp. 408-416, 2013.
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The regression problem and notation

We are given

Set of input points X = {xi}Ni=1, xi ∈ RD

Set of output points Y = {yi}Ni=1, yi ∈ RS

We assume

A continuous mapping between the input and the output
space (f : X → Y)

We want to estimate such a mapping using

Y = f(X) + R,

where rows of X and Y correspond to observations in the input
and output space, and the matrix R contains the residual
vectors.
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The Minimal Learning Machine

The Minimal Learning Machine algorithm can be decomposed
into two main steps:

Distance regression

Output estimation
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The Minimal Learning Machine
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The Minimal Learning Machine: Distance regression
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We are interested in finding a mapping g : RK → RK such that

∆y = g(Dx) + E
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The Minimal Learning Machine: Distance regression

Let’s assume that the mapping g is linear, then

∆y = DxB + E,

and the solution is given by B̂ = (DT
xDx)−1DT

x∆y.

For a test point x:
Collect the distances from the K reference points in the vector
d(x, R) = [d(x,m1), . . . , d(x,mK)], then estimate distances in Y

δ̂(y, T ) = d(x, R)B̂.
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The Minimal Learning Machine: Output estimation

For finding an estimate to the output y, we need to solve

(y − tk)
T (y − tk) = δ̂2(y, tk), ∀k = 1, . . . ,K

ŷ

tk

t1

t2

t3

Y(1)

Y(2)

�̂(y, tk)
�̂(y, t2)

�̂(y, t3)
�̂(y, t1)

It can be formulated as an optimization problem

ŷ = argmin
y

K∑
k=1

(
(y − tk)

T (y − tk)− δ̂2(y, tk)
)2
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The Expected Squared Distance (ESD)

Estimate the squared distance of two vectors in the
presence of missing data

α, β ∈ RD drawn from a same multivariate probability
distribution, but possibly with deleted entries

E[‖α− β‖22] =

D∑
i=1

E[(αi − βi)2]
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The Expected Squared Distance (ESD)

E[‖α− β‖22] =
∑

i/∈Mα∪Mβ

(αi − βi)2 +
∑

i∈Mα\Mβ

E[(αi − βi)2]

+
∑

i∈Mβ\Mα

E[(αi − βi)2] +
∑

i∈Mα∩Mβ

E[(αi − βi)2]

For entries i ∈Mα \Mβ, we have:

E[(αi − βi)2] = E[α2
i + β2i − 2αiβi] = E[α2

i ] + β2i − 2E[αi]βi

= E[α2
i ]− E[αi]

2 + E[αi]
2 + β2i − 2E[αi]βi

= (E[αi]− βi)2 + Var[αi]
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Simulation Methodology

MLM using different approaches for missing data

Drop entries
Input sample mean
EM
ESD

Six real-world datasets from UCI

Varying number of missing data
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Datasets

Table: Datasets characteristics

Dataset attributes instances

Concrete compression 8 1030
Boston Housing 13 506

Servo 4 167
Stocks 9 950

Breast cancer 30 569
Wine 13 178
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Results

Figure: RMSE for all datasets
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Conclusions

We have introduced a variant of MLM capable of handling
missing data

The proposed approach achieved the best results when
compared to other strategies for missing data
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Thank You!!!
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