BDMSO₂ vs. MSO₂

Francicleber Ferreira

V WLOGIA 17th November 2015

Fragments of SO

• We investigate fragments of second-order quantification:

 $\exists R\phi(R)$

"There is a relation R such that $\phi(R)$."

Expressing Problems with Sentences.

- 3-Colourability: Given a graph G = (V, E) decide whether it can coloured with three different colours, so that no tow adjacent vertices has the same colour.
- It can be expressed in SO:

 $\exists R \exists G \exists B (\forall x (Rx \lor Gx \lor Bx) \land$

 $\forall x \forall y ((\mathbf{R}x \land \mathbf{R}y) \lor (\mathbf{G}x \land \mathbf{G}y) \lor (\mathbf{B}x \land \mathbf{B}y) \rightarrow \neg \mathbf{E}xy))$

Expressing Problems with Sentences.

- 3-Colourability: Given a graph G = (V, E) decide whether it can coloured with three different colours, so that no tow adjacent vertices has the same colour.
- It can be expressed in SO:

 $\exists R \exists G \exists B (\forall x (Rx \lor Gx \lor Bx) \land$

 $\forall x \forall y ((\mathbf{R}x \land \mathbf{R}y) \lor (\mathbf{G}x \land \mathbf{G}y) \lor (\mathbf{B}x \land \mathbf{B}y) \rightarrow \neg \mathbf{E}xy))$

Relations of Bounded Degree

- Let *A* be a set and $R \subset A^k$ a *k*-ary relation.
- The Gaifman graph of *R* is the graph G = (A, E) such that

$${\it E}=\{({\it a},{\it a}')\in {\it A}| ext{ there is } ({\it a}_1,\ldots,{\it a}_k)\in {\it R},$$

$$a = a_i, a' = a_j, 1 \le i, j \le k$$
.

Relations of Bounded Degree

- Let *A* be a set and $R \subset A^k$ a *k*-ary relation.
- The Gaifman graph of *R* is the graph G = (A, E) such that

$$m{E}=\{(m{a},m{a}')\inm{A}| ext{ there is }(m{a}_1,\ldots,m{a}_k)\inm{R},$$
 $m{a}=m{a}_i,m{a}'=m{a}_j,m{1}\leq i,j\leq k\}.$

Quantifying relations of bounded degree.

$$R = \{(a, a, b), \\ (b, c, e), \\ (a, d, a), \\ (d, b, c)\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Bounded-Degree Second-Order Logic

- The Gaifman degree d_G(R) of R is the maximum degree of a vertex in G.
- The Bounded-Degree Second-Order Logic BDSO allows quantification over bounded-degree relations.
- The quantifiers

 \exists^d and \forall^d .

$$\mathfrak{A}\models \exists^{d} R\phi(R)$$
iff

there is a relation $\mathbf{R} \subset A^k$ with $d_{\mathcal{G}}(\mathbf{R}) \leq d$ s.t. $(\mathfrak{A}, \mathbf{R}) \models \phi(R)$.

Bounded-Degree Second-Order Logic

- The Gaifman degree d_G(R) of R is the maximum degree of a vertex in G.
- The Bounded-Degree Second-Order Logic BDSO allows quantification over bounded-degree relations.
- The quantifiers

 \exists^d and \forall^d .

$$\mathfrak{A}\models\exists^{d}m{R}\phi(m{R})$$

there is a relation $\mathbf{R} \subset A^k$ with $d_{\mathcal{G}}(\mathbf{R}) \leq d$ s.t. $(\mathfrak{A}, \mathbf{R}) \models \phi(R)$.

Bounded-Degree Second-Order Logic

- The Gaifman degree d_G(R) of R is the maximum degree of a vertex in G.
- The Bounded-Degree Second-Order Logic BDSO allows quantification over bounded-degree relations.
- The quantifiers

 \exists^d and \forall^d .

$$\mathfrak{A}\models\exists^{d} R\phi(R)$$
iff

there is a relation $\mathbf{R} \subset A^k$ with $d_{\mathcal{G}}(\mathbf{R}) \leq d$ s.t. $(\mathfrak{A}, \mathbf{R}) \models \phi(\mathbf{R})$.

BDSO, MSO and MSO₂

- MSO: Quantify sets of vertices.
- MSO₂: Quantify sets of edges.
- BDMSO₂: Quantify sets of edges of bounded degree.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- BDSO: Quantify relations of bounded degree.
- MSO(*f*): Quantify unary functions.

BDSO, MSO and MSO₂

ヘロト 人間 とくほとくほとう

Separating ∃BDMSO₂ and ∃MSO₂

- A query expressible in ∃MSO₂ but not in ∃BDMSO₂
- $S = \{E, P, Q\}$
- Surjective Homomorphism
- Is there a surjective homomorphism from the subgraph induced by *P* to the subgraph induced by *Q*?
- Internal Surjective Homomorphism
- Is there a subset of edges that forms surjective homomorphism from the subgraph induced by *P* to the subgraph induced by *Q*?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Separating ∃BDMSO₂ and ∃MSO₂

- The structure $\mathfrak{A}_{d,l,k}$ has $m >> max\{d, l, k\}$ cycles
- *Q* is a independent set of size *m*
- Each cycle has length *c* >> *m*
- The structure $\mathfrak B$ is obtained from $\mathfrak A_{d,l,k}$ by glueing two cycles
- 𝔅_{d,l,k} has *m* − 1 cycles and, hence, there is no internal surjective homomorphism

 $\mathfrak{A}_{d,l,k}$

 $\mathfrak{B}_{d,l,k}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Separating ∃BDMSO₂ and ∃MSO₂

$(\mathfrak{A}_{d,l,k}, R_1, \ldots, R_l) \leftrightarrow_{f(l)} (\mathfrak{B}_{d,l,k}, R'_1, \ldots, R'_l)$

There is a bijection from $(\mathfrak{A}_{d,l,k}, R_1, \ldots, R_l)$ to $(\mathfrak{B}_{d,l,k}, R'_1, \ldots, R'_l)$ which preserves neighborhoods.

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

Separating ∃BDMSO₂ and ∃MSO₂

- Internal surjective homomorphism is not expressible by ∃BDMSO₂
- But internal surjective homomorphism is expressible in ∃MSO₂

"Exists a set of edges between P and Q which is surjective

and satisfies the homomorphism clauses"

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

BDSO, MSO and MSO₂

・ロン ・四 と ・ ヨ と ・ ヨ と

Future

- Separate the other fragments.
- Investigate the hierarchies.
- Parameterized complexity.

Thank You!

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●