BDMSO_{2} vs. MSO_{2}

Francicleber Ferreira

V WLOGIA
17th November 2015

Fragments of SO

- We investigate fragments of second-order quantification:

$$
\exists R \phi(R)
$$

"There is a relation R such that $\phi(R)$."

Expressing Problems with Sentences.

- 3-Colourability: Given a graph $G=(V, E)$ decide whether it can coloured with three different colours, so that no tow adjacent vertices has the same colour.
- It can be expressed in SO:

$\forall x \forall y((R x \wedge R y) \vee(G x \wedge G y) \vee(B x \wedge B y) \rightarrow \neg E x y))$

Expressing Problems with Sentences.

- 3-Colourability: Given a graph $G=(V, E)$ decide whether it can coloured with three different colours, so that no tow adjacent vertices has the same colour.
- It can be expressed in SO:

$$
\begin{gathered}
\exists R \exists G \exists B(\forall x(R x \vee G x \vee B x) \wedge \\
\forall x \forall y((R x \wedge R y) \vee(G x \wedge G y) \vee(B x \wedge B y) \rightarrow \neg E x y))
\end{gathered}
$$

Relations of Bounded Degree

- Let A be a set and $R \subset A^{k}$ a k-ary relation.
- The Gaifman graph of R is the graph $G=(A, E)$ such that

$$
E=\left\{\left(a, a^{\prime}\right) \in A \mid \text { there is }\left(a_{1}, \ldots, a_{k}\right) \in R,\right.
$$

$$
\left.a=a_{i}, a^{\prime}=a_{j}, 1 \leq i, j \leq k\right\} .
$$

Relations of Bounded Degree

- Let A be a set and $R \subset A^{k}$ a k-ary relation.
- The Gaifman graph of R is the graph $G=(A, E)$ such that

$$
\begin{gathered}
E=\left\{\left(a, a^{\prime}\right) \in A \mid \text { there is }\left(a_{1}, \ldots, a_{k}\right) \in R,\right. \\
\left.a=a_{i}, a^{\prime}=a_{j}, 1 \leq i, j \leq k\right\} .
\end{gathered}
$$

Quantifying relations of bounded degree.

$$
\begin{aligned}
& R=\{(a, a, b), \\
&(b, c, e), \\
&(a, d, a), \\
&(d, b, c)\}
\end{aligned}
$$

Bounded-Degree Second-Order Logic

- The Gaifman degree $d_{\mathcal{G}}(R)$ of R is the maximum degree of a vertex in G.
- The Bounded-Degree Second-Order Logic BDSO allows quantification over bounded-degree relations.
- The quantifiers

$$
\mathfrak{A} \models \exists^{d} R \phi(R)
$$

there is a relation $\mathbf{R} \subset A^{k}$ with $d_{\mathcal{G}}(\mathbf{R}) \leq d$ s.t. $(\mathfrak{A}, \mathbf{R}) \models \phi(R)$.

Bounded-Degree Second-Order Logic

- The Gaifman degree $d_{\mathcal{G}}(R)$ of R is the maximum degree of a vertex in G.
- The Bounded-Degree Second-Order Logic BDSO allows quantification over bounded-degree relations.
- The quantifiers

Bounded-Degree Second-Order Logic

- The Gaifman degree $d_{\mathcal{G}}(R)$ of R is the maximum degree of a vertex in G.
- The Bounded-Degree Second-Order Logic BDSO allows quantification over bounded-degree relations.
- The quantifiers

$$
\begin{aligned}
& \exists^{d} \text { and } \forall^{d} . \\
& \mathfrak{A} \models \exists^{d} R \phi(R)
\end{aligned}
$$

iff
there is a relation $\mathbf{R} \subset A^{k}$ with $d_{\mathcal{G}}(\mathbf{R}) \leq d$ s.t. $(\mathfrak{A}, \mathbf{R}) \models \phi(R)$.

BDSO, MSO and MSO_{2}

- MSO: Quantify sets of vertices.
- MSO_{2} : Quantify sets of edges.
- BDMSO_{2} : Quantify sets of edges of bounded degree.
- BDSO: Quantify relations of bounded degree.
- MSO(f): Quantify unary functions.

BDSO, MSO and MSO_{2}

Separating $\exists \mathrm{BDMSO}_{2}$ and $\exists \mathrm{MSO}_{2}$

- A query expressible in $\exists \mathrm{MSO}_{2}$ but not in $\exists \mathrm{BDMSO}_{2}$
- $S=\{E, P, Q\}$
- Surjective Homomorphism
- Is there a surjective homomorphism from the subgraph induced by P to the subgraph induced by Q ?
- Internal Surjective Homomorphism
- Is there a subset of edges that forms surjective homomorphism from the subgraph induced by P to the subgraph induced by Q ?

Separating $\exists \mathrm{BDMSO}_{2}$ and $\exists \mathrm{MSO}_{2}$

Separating $\exists \mathrm{BDMSO}_{2}$ and $\exists \mathrm{MSO}_{2}$

Separating $\exists \mathrm{BDMSO}_{2}$ and $\exists \mathrm{MSO}_{2}$

Separating $\exists \mathrm{BDMSO}_{2}$ and $\exists \mathrm{MSO}_{2}$

- The structure $\mathfrak{A}_{d, l, k}$ has $m \gg \max \{d, l, k\}$ cycles
- Q is a independent set of size m
- Each cycle has length $c \gg m$
- The structure \mathfrak{B} is obtained from $\mathfrak{A}_{d, l, k}$ by glueing two cycles
- $\mathfrak{B}_{d, l, k}$ has $m-1$ cycles and, hence, there is no internal surjective homomorphism

Separating $\exists \mathrm{BDMSO}_{2}$ and $\exists \mathrm{MSO}_{2}$

Separating $\exists \mathrm{BDMSO}_{2}$ and $\exists \mathrm{MSO}_{2}$

$$
\mathfrak{A}_{d, l, k}
$$

$\mathfrak{B}_{d, l, k}$

Separating $\exists \mathrm{BDMSO}_{2}$ and $\exists \mathrm{MSO}_{2}$

$$
\left(\mathfrak{A}_{d, l, k}, R_{1}, \ldots, R_{l}\right) \leftrightarrow_{f(I)}\left(\mathfrak{B}_{d, l, k}, R_{1}^{\prime}, \ldots, R_{l}^{\prime}\right)
$$

There is a bijection from $\left(\mathfrak{A}_{d, l, k}, R_{1}, \ldots, R_{l}\right)$ to $\left(\mathfrak{B}_{d, l, k}, R_{1}^{\prime}, \ldots, R_{l}^{\prime}\right)$ which preserves neighborhoods.

Separating $\exists \mathrm{BDMSO}_{2}$ and $\exists \mathrm{MSO}_{2}$

- Internal surjective homomorphism is not expressible by $\exists \mathrm{BDMSO}_{2}$
- But internal surjective homomorphism is expressible in $\exists \mathrm{MSO}_{2}$
"Exists a set of edges between P and Q which is surjective and satisfies the homomorphism clauses"

BDSO, MSO and MSO_{2}

Future

- Separate the other fragments.
- Investigate the hierarchies.
- Parameterized complexity.

Thank You!

