How to Make your Neural Network Robust Enough to Outliers: Applications in Pattern Classification and Regression

Guilherme Barreto

gbarreto@ufc.br

www.researchgate.net/profile/Guilherme_Barreto2/

Center of Reference in Automation and Robotics (CENTAURO) Department of Teleinformatics Engineering (DETI) Federal University of Ceará (UFC) Fortaleza, Ceará, Brazil

Fortaleza-CE, Brazil

November 20, 2015

Is Your Neural Network Robust to Outliers?

Outline of the Talk

- What is an outlier?
- OLS and LMS Estimation Methods
- OLS/LMS Performance in the Presence of Outliers
- **④** The M-Estimation Framework
- Sobust Linear Neural Networks
- O Robust Nonlinear Neural Networks
- Conclusions

Parte I

What is an Outlier?

© G. A. Barreto Is your Neural Network Robust to Outliers?

Nobody knows!

C G. A. Barreto Is your Neural Network Robust to Outliers?

What?

• Yes, this is true! It is extremely difficult to define an outlier.

- Yes, this is true! It is extremely difficult to define an outlier.
- It is a very subjective and unpleasant topic.

- Yes, this is true! It is extremely difficult to define an outlier.
- It is a very subjective and unpleasant topic.
- Worse, outliers are difficult to detect, especially in high-dimensional data.

- Yes, this is true! It is extremely difficult to define an outlier.
- It is a very subjective and unpleasant topic.
- Worse, outliers are difficult to detect, especially in high-dimensional data.
- It is the type of sample you do not want in your dataset ...

- Yes, this is true! It is extremely difficult to define an outlier.
- It is a very subjective and unpleasant topic.
- Worse, outliers are difficult to detect, especially in high-dimensional data.
- It is the type of sample you do not want in your dataset ...
- ... because it can spoil your <u>standard</u> data modeling procedure!

Assumption 1 - Gaussianity of errors.

Assumption 1 - Gaussianity of errors. Assumption 2 - Linearity of the model.

Assumption 1 - Gaussianity of errors. Assumption 2 - Linearity of the model. Assumption 3 - Stationarity of data distribution.

Assumption 1 - Gaussianity of errors.

Assumption 2 - Linearity of the model.

Assumption 3 - Stationarity of data distribution.

Assumption 4 - Sufficiency of information in the samples.

From the exposed, outliers are...

... data samples that do not fit to our *current assumptions* about the data generating process.

I got it! Outliers suck! But...

Well, the one million dollar question is then...

To remove or not to remove the outliers from my dataset?

I'll try to answer this question along the talk with several examples!

Datasets and Outliers Wind Power Generator

- Let us start with a real-world problem I faced some time ago.
- The determination of the power curve of a wind turbine¹.

¹ M. Lydia, S. S. Kumar, A. I. Selvakumar & G. E. P. Kumar (2014). "A comprehensive review on wind turbine power curve modeling techniques", Renewable and Sustainable Energy Reviews, 30:452-460.

Initial Data Acquisition

Octave/Matlab Code (polynomial curve fitting)

```
>> load aerogerador_reduced.dat; % load data samples
```

```
>> v=aerogerador(:,1); % speed measurements
```

```
>> p=aerogerador(:,2); % power measurements
```

```
>> figure; plot(v,p,'bo'); grid; hold on;
```

```
>> xlabel('wind speed [m/s]'); ylabel('power [kW]');
```

```
>> k=5; % order of polynomial
```

```
>> B=polyfit(v,p,k); % fit a polynomial to data
```

```
>> vv=min(v):0.1:max(v); vv=vv'; % grid over range of wind data
```

```
>> ypred=polyval(B,vv); % predictions for grid values
```

```
>> plot(vv,ypred,'k-'); hold off; % overlap curve to data
```

Datasets and Outliers Wind Power Generator

Initial Curve Fitting

Initial Data Acquisition

Curve Fitting with Outliers

Curve Fitting with Outliers

Figure : According to this model, the power generator acts as a "fan" in a certain range, demanding energy instead of generating it!

Curve Fitting with Outliers

Figure : After acquiring enough sample, it seems that the number of outliers is very small compared to the whole set. Do they still affect the curve fitting process?

Figure : After acquiring enough samples, the number of outliers is so small that they DO NOT affect the curve fitting process AT ALL.

Parte II

OLS and LMS Estimation Methods

C G. A. Barreto Is your Neural Network Robust to Outliers?

• Consider the linear combiner model as shown below.

• Model output at time t is given by

$$y(t) = \sum_{j=0}^{p} w_j(t) x_j(t), \qquad (1)$$
$$= \mathbf{w}^T(t) \mathbf{x}(t). \qquad (2)$$

• It can be used for function approximation.

- For that, we need to estimate the parameter vector $\mathbf{w} \in \mathbb{R}^p$.
- We'll use observed data $\{\mathbf{x}(t), d(t)\}_{t=1}^N$ to estimate \mathbf{w} .
- I'll discuss in this talk two parameter estimation methods:
 OLS Ordinary Least Squares (a batch method).

• It can be used for function approximation.

- For that, we need to estimate the parameter vector $\mathbf{w} \in \mathbb{R}^p$.
- We'll use observed data $\{\mathbf{x}(t), d(t)\}_{t=1}^N$ to estimate \mathbf{w} .
- I'll discuss in this talk two parameter estimation methods:
 - OLS Ordinary Least Squares (a batch method).
 - IMS Least Mean Squares (an online method).

Linear Models Ordinary Least Squares (OLS) Estimation

- Initially proposed in 1795 by Carl Friedrich Gauss (1777 -1855), but published only in 1809².
- However, **Adrien Marie Legendre** (1752-1833) developed the same method independently and published it first in 1806³.

 Both applied the method to compute orbits of celestial bodies using measurements from telescopes.

³A. M. Legendre (1805). "Nouvelles Méthodes pour la Détermination des Orbites des Comètes", Courcier, Paris.

 $^{^2 \}rm C.$ F. Gauss (1809). "Theoria Motus Corporum Coelestium in Sectionibus Conicis Solem Ambientium", Perthes et I. H. Besser, Hamburgi.

• OLS Optimality criterion: Sum of Squared Errors (SSE)

$$J_{OLS}(\mathbf{w}) = \sum_{t=1}^{N} e^{2}(t) = \sum_{t=1}^{N} (d(t) - y(t))^{2}, \quad (3)$$
$$= \sum_{t=1}^{N} (d(t) - \mathbf{w}^{T} \mathbf{x}(t))^{2} = \|\mathbf{e}\|^{2}, \quad (4)$$

where $\|\mathbf{e}\|$ is the Euclidean norm of the error vector \mathbf{e} .

The optimal estimate of the parameter vector w is given by

$$\mathbf{w} = (\mathbf{X}\mathbf{X}^T)^{-1}\mathbf{X}\mathbf{d}$$
(5)

where $\mathbf{X} = [\mathbf{x}(1) \mid \mathbf{x}(2) \mid \cdots \mid \mathbf{x}(N)] \in \mathbb{R}^{(p+1) \times N}$ and $\mathbf{d} = [d(1) \mid d(2) \mid \cdots \mid d(N)]^T \in \mathbb{R}^N$.

Linear Models Least Mean Squares (LMS) Estimation

- Proposed in 1960 by Dr. Bernard Widrow (1929) and his first PhD. student Marcian "Ted" Hoff, Jr. (1937 -)⁴.
- Ted Hoff is considered the "inventor" of the microprocessor (1st patent), entering the Intel Corporation in 1967 as the employee number 12.
- There, he designed the 1st computer-on-a-chip microprocessor (1968), which came on the market as the Intel 4004 (1971), starting the microcomputer industry⁵.

⁴B. Widrow and M.E. Hoff, Jr., "Adaptive Switching Circuits," IRE WESCON Convention Record, 4:96-104, August 1960.

⁵More at www.thocp.net/biographies/hoff_ted.html

• LMS Optimality criterion: Instantaneous Squared Error (ISE)

$$J_{LMS}(t) = e^{2}(t) = (d(t) - y(t))^{2},$$
 (6)

$$= (d(t) - \mathbf{w}^T(t)\mathbf{x}(t))^2,$$
 (7)

where $\mathbf{w}(t)$ is the current estimation of the parameter vector.

• The recursive updating rule for $\mathbf{w}(t)$ is given by

$$\mathbf{w}(t+1) = \mathbf{w}(t) - \alpha \frac{\partial J(t)}{\partial \mathbf{w}(t)}, \tag{8}$$

$$= \mathbf{w}(t) + \alpha e(t)\mathbf{x}(t), \tag{9}$$

$$= \mathbf{w}(t) + \alpha(d(t) - y(t))\mathbf{x}(t), \qquad (10)$$

$$= \mathbf{w}(t) + \alpha(d(t) - \mathbf{w}^T(t)\mathbf{x}(t))\mathbf{x}(t), \quad (11)$$

where $0 < \alpha < 1$ is the learning step.

 In the context of neural networks, the linear combiner together with the OLS rule give us the Optimal Linear Associative Memory (OLAM) model by Kohonen & Ruohonen⁶

 $^{^{6}}$ T. Kohonen and M. Ruohonen (1973). "Representation of Associated Data by Matrix Operators", IEEE Trans. on Computers, vol 22, no. 7, p. 701–702.

¹ B. Widrow and M. E. Hoff, Jr. (1960). "Adaptive switching circuits". In: Proc. IRE WESCON Conf. Rec. Part 4, p. 96–104.
- In the context of neural networks, the linear combiner together with the OLS rule give us the Optimal Linear Associative Memory (OLAM) model by Kohonen & Ruohonen⁶
- In the context of neural networks, the linear combiner together with the LMS rule give us the ADAptive LINear Element (ADALINE) model by Widrow & Hoff⁷

⁶T. Kohonen and M. Ruohonen (1973). "Representation of Associated Data by Matrix Operators", IEEE Trans. on Computers, vol 22, no. 7, p. 701–702.

⁷ B. Widrow and M. E. Hoff, Jr. (1960). "Adaptive switching circuits". In: Proc. IRE WESCON Conf. Rec. Part 4, p. 96–104.

 OLS/LMS methods are widely used in multilayer feedforward/recurrent neural network architectures.

- OLS/LMS methods are widely used in multilayer feedforward/recurrent neural network architectures.
- To name a few:

- OLS/LMS methods are widely used in multilayer feedforward/recurrent neural network architectures.
- To name a few:
 - MLP Multilayer Perceptron (LMS, output layer)

- OLS/LMS methods are widely used in multilayer feedforward/recurrent neural network architectures.
- To name a few:
 - MLP Multilayer Perceptron (LMS, output layer)
 - 8 RBF Radial Basis Functions Network (OLS, output layer)

- OLS/LMS methods are widely used in multilayer feedforward/recurrent neural network architectures.
- To name a few:
 - MLP Multilayer Perceptron (LMS, output layer)
 - 8 RBF Radial Basis Functions Network (OLS, output layer)
 - ELM Extreme Learning Machine (OLS, output layer)

- OLS/LMS methods are widely used in multilayer feedforward/recurrent neural network architectures.
- To name a few:
 - MLP Multilayer Perceptron (LMS, output layer)
 - 8 RBF Radial Basis Functions Network (OLS, output layer)
 - SELM Extreme Learning Machine (OLS, output layer)
 - NoProp No-Propagation Network (LMS, output layer)

- OLS/LMS methods are widely used in multilayer feedforward/recurrent neural network architectures.
- To name a few:
 - MLP Multilayer Perceptron (LMS, output layer)
 - 2 RBF Radial Basis Functions Network (OLS, output layer)
 - SELM Extreme Learning Machine (OLS, output layer)
 - NoProp No-Propagation Network (LMS, output layer)
 - SESN Echo-State Network (OLS, output layer)

Ocst functions that assign same importance to all errors.

- Ocst functions that assign same importance to all errors.
- ② All errors contribute the same way to the final solution.

- Ocst functions that assign same importance to all errors.
- All errors contribute the same way to the final solution.
- Solution is optimal only under Gaussian errors!

- Ocst functions that assign same importance to all errors.
- All errors contribute the same way to the final solution.
- Solution is optimal only under Gaussian errors!
- Outliers produce larger errors ...

- Ocst functions that assign same importance to all errors.
- All errors contribute the same way to the final solution.
- Solution is optimal only under Gaussian errors!
- Outliers produce larger errors ...
- ... then biasing the solution towards outliers locations.

Parte III

OLS/LMS Performance and Outliers

C G. A. Barreto Is your Neural Network Robust to Outliers?

Regression Example on Lung Cancer Dataset

Lung Cancer Dataset w/o USA sample

Sample	Country	Cigarette per capita	Death per million
1	Australia	480	180
2	Canada	500	150
3	Denmark	380	170
4	Finland	1100	350
5	Great Britain	1100	460
6	Iceland	230	60
7	Netherlands	490	240
8	Norway	250	90
9	Sweden	300	110
10	Switzerland	510	250

Table : Consumption per capita of cigarettes in several countries in 1930 and death rates due to lung cancer in 1950^{b} .

^aSource: D. Freedman, R. Pisani and R. Purves (2007), "Statistics", 4th edition, W. W. Norton & Company.
^bSource: D. Freedman, R. Pisani and R. Purves (2007), "Statistics", 4th edition, W. W. Norton & Company.

Regression Example on Lung Cancer Dataset

Regression Example on Lung Cancer Dataset

Octave/Matlab Code (linear regression and OLS estimation)

```
>> x=[480; 500; 380; 1100; 1100; 230; 490; 250; 300; 510];
>> y=[180; 150; 170; 350; 460; 60; 240; 90; 110; 250];
>> n=length(x);
>> X=[ones(n,1) x];
>> B=X\v % Uses QR decomposition
R =
9.1393
0.3687
>> B=regress(y,X)
B=
9.1393
0.3687
>> B=pinv(X)*y % Uses SVD method (recommended)
B=
9.1393
0.3687
```

Regression Example on Lung Cancer Dataset

Regression Example on Lung Cancer Dataset

Lung Cancer Dataset with USA sample

Sample	Country	Cigarette per capita	Death per million	
1	Australia	480	180	
2	Canada	500	150	
3	Denmark	380	170	
4	Finland	1100	350	
5	Great Britain	1100	460	
6	Iceland	230	60	
7	Netherlands	490	240	
8	Norway	250	90	
9	Sweden	300	110	
10	Switzerland	510	250	
11	United States	1300	200	

Table : Consumption per capita of cigarettes in several countries in 1930 and death rates due to lung cancer in 1950^{b} .

^aSource: D. Freedman, R. Pisani and R. Purves (2007), "Statistics", 4th edition, W. W. Norton & Company.
^bSource: D. Freedman, R. Pisani and R. Purves (2007), "Statistics", 4th edition, W. W. Norton & Company.

Regression Example on Lung Cancer Dataset

Figure : Scatterplot of the Lung Cancer data with USA sample.

Regression Example on Lung Cancer Dataset

Octave/Matlab Code (linear regression and OLS estimation)

```
>> x=[480; 500; 380; 1100; 1100; 230; 490; 250; 300; 510; 1300];
>> y=[180; 150; 170; 350; 460; 60; 240; 90; 110; 250; 200];
>> n=length(x);
>> X=[ones(n,1) x];
>> B=X\y % Uses QR decomposition
B=
67.5609
0.2284
>> B=pinv(X)*y % Uses SVD method (recommended)
B=
67.5609
0.2284
```

Regression Example on Lung Cancer Dataset

Figure : Blue: $\hat{y} = 0.23x + 67.56$ (with USA sample). Cyan: $\hat{y} = 0.37x + 9.14$ (w/o USA sample).

Regression Example on Lung Cancer Dataset

Summary table with regression lines (OLS estimation)

Dataset	Slope	Bias	Regression line
Lung cancer w/o USA	9.14	0.37	$\hat{y}_i = 9.14 + 0.37x_i$
Lung cancer with USA	67.56	0.23	$\hat{y}_i = 67.56 + 0.23x_i$

Table : Regression lines whose parameters were estimated using the OLS method for the lung cancer dataset with and without the USA sample.

Outliers in Classification Problems

• So far, we have dealt with outliers in regression problems.

 $^{^{8}}$ B. Frenay and M. Verleysen (2014). "Classification in the presence of label noise: a survey", IEEE Trans. on Neural Networks and Learning Systems, 25(5):845-869

- So far, we have dealt with outliers in regression problems.
- However, another type of outlier is drawing much attention from Machine Learning community.

⁸B. Frenay and M. Verleysen (2014). "Classification in the presence of label noise: a survey", IEEE Trans. on Neural Networks and Learning Systems, 25(5):845-869

- So far, we have dealt with outliers in regression problems.
- However, another type of outlier is drawing much attention from Machine Learning community.
- It is called label noise⁸ .

⁸B. Frenay and M. Verleysen (2014). "Classification in the presence of label noise: a survey", IEEE Trans. on Neural Networks and Learning Systems, 25(5):845-869

- So far, we have dealt with outliers in regression problems.
- However, another type of outlier is drawing much attention from Machine Learning community.
- It is called label noise⁸.
- Label noise may result of striking an incorrect key on a keyboard errors, misplaced decimal points, misjudgment of a specialist, recording or transmission errors.

⁸B. Frenay and M. Verleysen (2014). "Classification in the presence of label noise: a survey", IEEE Trans. on Neural Networks and Learning Systems, 25(5):845-869

- So far, we have dealt with outliers in regression problems.
- However, another type of outlier is drawing much attention from Machine Learning community.
- It is called label noise⁸.
- Label noise may result of striking an incorrect key on a keyboard errors, misplaced decimal points, misjudgment of a specialist, recording or transmission errors.
- Such outliers often go unnoticed because pattern classification is being more and more automatically executed by computers, without careful inspection or screening.

 $^{^{8}}$ B. Frenay and M. Verleysen (2014). "Classification in the presence of label noise: a survey", IEEE Trans. on Neural Networks and Learning Systems, 25(5):845-869

Ordinary Least Squares (OLS) Estimation Pattern Classification Example (linear separable case)

Figure : Simulating noise label by changing the labels of a few samples.

Ordinary Least Squares (OLS) Estimation Pattern Classification Example (linear separable case)

• Another type of scenario where a sample can be wrongly considered an outlier involves **nonstationary**⁹ problems.

⁹C.Alippi & R. Polikar (2014). "Special Issue on Learning In Nonstationary and Evolving Environments", IEEE Trans. on Neural Networks and Learning Systems, vol. 25, no. 1.

¹⁰ J. Gama, I. Zliobaite, A. Bifet, M. Pechenizkiy & A. Bouchachia (2014). "A survey on concept drift adaptation", ACM Computing Surveys, 46(4), article no. 44.

- Another type of scenario where a sample can be wrongly considered an outlier involves **nonstationary**⁹ problems.
- In classification, this is usually called Concept Drift Problem¹⁰.

⁹C.Alippi & R. Polikar (2014). "Special Issue on Learning In Nonstationary and Evolving Environments", IEEE Trans. on Neural Networks and Learning Systems, vol. 25, no. 1.

¹⁰ J. Gama, I. Zliobaite, A. Bifet, M. Pechenizkiy & A. Bouchachia (2014). "A survey on concept drift adaptation", ACM Computing Surveys, 46(4), article no. 44.

- Another type of scenario where a sample can be wrongly considered an outlier involves nonstationary⁹ problems.
- In classification, this is usually called Concept Drift Problem¹⁰.
- A neural network classifier must be capable of handling this type of situation, specially if it is designed for lifelong learning.

⁹C.Alippi & R. Polikar (2014). "Special Issue on Learning In Nonstationary and Evolving Environments", IEEE Trans. on Neural Networks and Learning Systems, vol. 25, no. 1.

¹⁰ J. Gama, I. Zliobaite, A. Bifet, M. Pechenizkiy & A. Bouchachia (2014). "A survey on concept drift adaptation", ACM Computing Surveys, 46(4), article no. 44.

Pattern Classification Example (linear separable case)

Nonstationary scenario: incoming of new samples of Class +1

Figure : Simulating nonstationarity by adding new samples.

Pattern Classification Example (linear separable case)

Nonstationary scenario: 0, 5, 10 and 15 new samples to Class +1

Figure : Decision lines for OLAM classifier trained with OLS rule.

Least Mean Squares (LMS) Estimation Pattern Classification Example (linear separable case)

Nonstationary scenario: 0, 5, 10 and 15 new samples to Class +1

Figure : Decision lines for Adaline classifier trained with LMS rule.
Ordinary Least Squares (OLS) Estimation Pattern Classification Example (nonlinear separable case)

Ordinary Least Squares (OLS) Estimation Pattern Classification Example (nonlinear separable case)

Parte IV

The M-Estimation Framework

C G. A. Barreto Is your Neural Network Robust to Outliers?

The *M*-Estimation Framework The Beginning

- Dr. Peter J. Huber¹¹ (1934) introduced the concept of *M*-estimation.
- The M stands for "Maximum likelihood" type estimation.
- Robustness is achieved by minimizing another function than the sum of the squared errors.

 $^{11}\mbox{P}.$ J. Huber (1964). "Robust Estimation of a Location Parameter", Annals of Mathematical Statistics, 35(1):73–101.

The *M*-Estimation Framework

• Based on Huber theory, a general *M*-estimator minimizes the following cost function:

$$J_M(\mathbf{w}) = \sum_{t=1}^{N} \rho(e(t)) = \sum_{t=1}^{N} \rho(d(t) - y(t)), \quad (12)$$
$$= \sum_{t=1}^{N} \rho(d(t) - \mathbf{w}^T \mathbf{x}(t)), \quad (13)$$

where the function $\rho(\cdot)$ computes the contribution of each error sample $e_{in} = d_{in} - y_{in}$ to the cost function.

• The OLS rule is a particular type of M-estimator, achieved when $\rho(e(t))=e^2(t).$

• The function ρ has the following properties: Property 1 : $\rho(e(t)) \ge 0$. Property 2 : $\rho(0) = 0$. Property 3 : $\rho(e(t)) = \rho(-e(t))$. Property 4 : $\rho(e(t)) \ge \rho(e(t'), \text{ for } |e(t)| > |e(t')|$.

The *M*-Estimation Framework Huber's Cost Function

• For the sake of example, let us consider the Huber's cost function:

$$\rho(e(t)) = \begin{cases} \frac{1}{2}e^2, & |e(t)| \le k\\ k|e(t)| - \frac{1}{2}k^2, & |e(t)| > k \end{cases}$$
(14)

where the k > 0 is the error (or outlier) threshold.

The corresponding weight function is given by

$$w(e(t)) = \begin{cases} 1, & |e(t)| \le k \\ \frac{k}{|e(t)|}, & |e(t)| > k \end{cases}$$
(15)

- The value $k = 1.345\hat{\sigma}$ is commonly used, where $\hat{\sigma}$ is itself a robust estimate of the dispersion of the errors.
- A usual approach is to take $\hat{\sigma} = MAR/0.6745$, where MAR is the median absolute residual.
- The constant value 0.6745 makes σ̂ an unbiased estimate for Gaussian errors.

The *M*-Estimation Framework Huber's Cost Function

Figure : Huber's cost function (left) and weight function (right).

The *M*-Estimation Framework Estimation Algorithm

- In order to derive a learning rule based on *M*-estimators, let us define the *score function* $\psi(e(t)) = \partial \rho(e(t)) / \partial e(t)$.
- Differentiating ρ w.r.t. the parameter vector $\mathbf{w}(t)$, we get

$$\sum_{t=1}^{N} \psi(y(t) - \mathbf{w}^T \mathbf{x}(t)) \mathbf{x}(t)^T = \mathbf{0},$$
(16)

where $\mathbf{0}$ is a (p+1)-dimensional row vector of zeros.

• Defining the weight function $w(e(t))=\psi(e(t))/e(t),$ and let w(t)=w(e(t)), we arrive at

$$\sum_{t=1}^{N} w(t)(y(t) - \mathbf{w}^T \mathbf{x}(t)) \mathbf{x}^T(t) = \mathbf{0}.$$
 (17)

The *M*-Estimation Framework Estimation Algorithm

• Thus, solving the previous equations corresponds to solving a weighted least-squares problem, since we want to minimize

$$J_M(\mathbf{w}) = \sum_{t=1}^N w^2(t)e^2(t) = \sum_{t=1}^N w^2(e(t))e^2(t)$$
 (18)

- However, the weights depend on the residuals, the residuals depend upon the estimated coefficients, and the estimated coefficients depend upon the weights.
- Hence, an iterative estimation method is required. The *iteratively reweighted least-squares*¹² (IRLS) is commonly used of this purpose.

 $^{^{12}}$ J. Fox (2002). "An R and S-PLUS Companion to Applied Regression", SAGE Publications.

The *M*-Estimation Framework Estimation Algorithm

Iteratively Reweighted Least Squares (IRLS) Algorithm

- Step 1 Provide an initial estimate w(0) using the standard OLS rule. Let n = 1.
- Step 2 At each iteration n, compute the residuals $e^{(n-1)}(t)$ and their corresponding weights $w^{(n-1)}(t) = w[e^{(n-1)}(t)]$ for all input patterns $\mathbf{x}(t)$, $t = 1, \ldots, N$, using the current estimate of the parameter vector.

Step 3 - Solve for new weighted-least-squares estimate of $\mathbf{w}(t)$:

$$\mathbf{w}^{(n)} = (\mathbf{X}\mathbf{W}^{(n-1)}\mathbf{X}^T)^{-1}\mathbf{X}\mathbf{W}^{(n-1)}\mathbf{d},$$
 (19)

where $\mathbf{W}^{(n-1)} = \text{diag}\{w^{(n-1)}(t)\}\$ is an $N \times N$ weight matrix for the residuals of all N input patterns. Let n = n + 1 and repeat Steps 2 and 3 until the convergence of the parameter vector $\mathbf{w}^{(n)}$.

The *M*-Estimation Framework Least Mean *M*-Estimate (LMM) Algorithm

• LMM cost function¹³

$$J_{LMM}(t) = \rho(e(t)) = \rho(d(t) - y(t)), \qquad (20)$$

= $\rho(d(t) - \mathbf{w}^T(t)\mathbf{x}(t)), \qquad (21)$

where $\mathbf{w}(t)$ is the current estimation of the parameter vector.

• The recursive updating rule for $\mathbf{w}(t)$ is given by

$$\mathbf{w}(t+1) = \mathbf{w}(t) - \alpha \frac{\partial J_{LMM}(t)}{\partial \mathbf{w}(t)}, \qquad (22)$$

$$= \mathbf{w}(t) + \alpha w(e(t))e(t)\mathbf{x}(t), \qquad (23)$$

$$= \mathbf{w}(t) + \alpha \psi(e(t))\mathbf{x}(t), \qquad (24)$$

where we used the fact that $w(e(t)) = \psi(e(t))/e(t)$.

¹³Y. Zou, S. C. Chan & T. S. Ng (2000). "Least mean *M*-estimate algorithms for robust adaptive filtering in impulsive noise", IEEE Transactions on Circuits and Systems II, 47(12):1564–1569.

LMS estimation

- **Cost function**: $J_{LMS}(t) = e^2(t) = (d(t) y(t))^2$
- Learning rule:

$$\mathbf{w}(t+1) = \mathbf{w}(t) + \alpha e(t)\mathbf{x}(t)$$
(25)

LMM estimation

- Cost function: $J_{LMM}(t) = \rho(e(t)) = \rho(d(t) y(t))$
- Learning rule:

$$\mathbf{w}(t+1) = \mathbf{w}(t) + \alpha w(e(t))e(t)\mathbf{x}(t)$$
(26)

Parte V

Robust Linear Neural Network Models

C G. A. Barreto Is your Neural Network Robust to Outliers?

M-Estimation for Robust Classification

Pattern Classification Example (linear separable case)

Nonstarionary scenario: 0, 5, 10, 15 new samples to Class +1

Figure : Decision lines for OLAM classifier trained with OLS and *M*-estimation (Andrews weight function).

M-Estimation for Robust Classification

Pattern Classification Example (linear separable case)

Nonstarionary scenario: 0, 5, 10, 15 new samples to Class +1

Figure : Decision lines for ADALINE classifier trained with LMS and LMM learning rules (Talwar weight function).

Parte VI

Robust Nonlinear Neural Network Models

C G. A. Barreto Is your Neural Network Robust to Outliers?

M-Estimation for Robust Classification Pattern Classification Example (nonlinear separable case)

Figure : Decision curves for the ELM classifier (U(-0.01, 0.01), 4 tanh hidden neurons) trained with OLS rule and *M*-estimation (Andrews weight function).

Ordinary Least Squares (OLS) Estimation Pattern Classification Example (nonlinear separable case)

Figure : Decision curves for the ELM classifier $(U(-0.01, 0.01), 4 \tanh hidden neurons)$ trained with OLS rule and *M*-estimation (Andrews weight function).

M-Estimation for Robust Classification Pattern Classification Example (nonlinear separable case)

Figure : Decision curves for the RBF classifier (K-means function, 4 Gaussian basis functions) trained with OLS rule and M-estimation (Andrews weight function).

Ordinary Least Squares (OLS) Estimation Pattern Classification Example (nonlinear separable case)

Figure : Decision curves for the RBF classifier (K-means function, 4 Gaussian basis functions) trained with OLS rule and M-estimation (Andrews weight function).

M-Estimation for Robust Classification Pattern Classification Example (nonlinear separable case)

Figure : Decision curves for the MLP classifier (backprop, 4 tanh hidden neurons) trained with LMS rule and LMM (Talwar weight function).

Ordinary Least Squares (OLS) Estimation Pattern Classification Example (nonlinear separable case)

Figure : Decision curves for the MLP classifier (backprop, 4 tanh hidden neurons) trained with LMS rule and LMM (Talwar weight function).

Parte VII

Conclusions

© G. A. Barreto Is your Neural Network Robust to Outliers?

• Since detecting outliers is a very tricky task, ...

- Since detecting outliers is a very tricky task, ...
- ... the removal of suspected data samples are not recommended, because...

- Since detecting outliers is a very tricky task, ...
- ... the removal of suspected data samples are not recommended, because...
- ... they can turn to be relevant to your problem inference.

- Since detecting outliers is a very tricky task, ...
- ... the removal of suspected data samples are not recommended, because...
- ... they can turn to be relevant to your problem inference.
- A better and wiser approach is to use *M*-estimators!

• They provide resilience to outliers.

 $^{^{14}\}mathrm{When}$ samples suspected to be outliers turn out to be relevant data samples as time goes by.

- They provide resilience to outliers.
- They are simple to incorporate into the neural model.

 $^{^{14}\}mathrm{When}$ samples suspected to be outliers turn out to be relevant data samples as time goes by.

- They provide resilience to outliers.
- They are simple to incorporate into the neural model.
- Only one additional parameter to tune.

 $^{^{14}\}ensuremath{\mathsf{W}}\xspace^{14}\ensuremath{\mathsf{W}}\xspace^{14}\ensuremath{\mathsf{W}}\xspace^{14}\ensuremath{\mathsf{w}}\xspace^{14}\ensurema$

- They provide resilience to outliers.
- They are simple to incorporate into the neural model.
- Only one additional parameter to tune.
- They can be used in batch and online learning rules.

 $^{^{14}}$ When samples suspected to be outliers turn out to be relevant data samples as time goes by.

- They provide resilience to outliers.
- They are simple to incorporate into the neural model.
- Only one additional parameter to tune.
- They can be used in batch and online learning rules.
- They fit well to nonstationary scenario¹⁴.

 $^{^{14}}$ When samples suspected to be outliers turn out to be relevant data samples as time goes by.

- Guilherme A. Barreto & Ana Luiza B. P. Barros (2015). "On the Design of Robust Linear Pattern Classifiers based on *M*-Estimators", *Neural Processing Letters*, 42(1):119-137.
- Guilherme A. Barreto & Ana Luiza B. P. Barros (2015). "A Robust Extreme Learning Machine for Pattern Classification with Outliers", *Neurocomputing*, In Press.
- K. Zhang & M. Luo (2015). "Outlier-robust extreme learning machine for regression problems", *Neurocomputing*, 151:1519-1527.
- P. Horata, S. Chiewchanwattana & K. Sunat (2013). "Robust Extreme Learning Machine", *Neurocomputing*, 102:31-44.

© G. A. Barreto Is your Neural Network Robust to Outliers?

Thank you very much!