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Abstract

Certain subgraphs of a given gragtrestrict the minimum numbey (G) of colors that can be assigned to the vertice& of
such that the endpoints of all edges receive distinct colors. Some of such subgraphs are related to the celebrated Strong Perfec
Graph Theorem, as itimplies that every graplontains a clique of sizg(G), or an odd hole or an odd anti-hole as an induced
subgraph. In this paper, we investigate the impact of induced maximal cliques, odd holes and odd anti-holes on the polytope
associated with a new 0-1 integer programming formulation of the graph coloring problem. We show that they induce classes
of facet defining inequalities.
00 2003 Elsevier B.V. All rights reserved.
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1. Introduction Observe that there exists a coloring@fwith x (G)
colors in which each vertex is assigned exactly one

Given a graphG = (V, E), whereV s its set of color.

vertices and its set of edges, and a positive integer Describing optimal solutions of the graph coloring
a k-coloring of G (or, more generally, aoloring problem is one of the most challenging problems in
of G) is an assignment of colors frorfd,..., k} combinatorial optimization. One possible approach is

to the vertices ofG so that each vertex receives at to formulate the problem as a 0-1 integer program.
least one color and the endpoints of all edges are This approach has received a considerable attention
assigned different colors. Thgaph coloring problem in the last years, as the formulations depicted in

is defined as the problem of finding the MINIMUM * 1aple 1 indicate. The notation adopted in the table
number of colorsy(G), known as thechromatic . . .
is n for the number of vertices of7, m for its

numberof G, such thatG admits ay (G)-coloring.
number of edges and: for the number of edges

of the complement oG. For each formulation, it is
* Corresponding author. presented the number of binary variables employed,
E-mail addressesncampelo@Iia.ufc.br (M. Campélo), the number of linear constraints, the dimension of
correa@lia.ufc.br (R. Corréa), abitbol@lia.ufc.br (Y. Frota). . .
1 Partially supported by the Conselho Nacional de Desenvolvi- the correspondlng polytope and a reference in the
mento Cientifico e Tecnolégico, CNPq, Brazil. literature.
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Table 1 have some influence i®(G). We show some facet
0-1 integer programming formulations of the graph coloring prob- defining inequalities based on them.

lem from the literature The rest of the paper is organized as follows.
Formulation Variables Constraints  Dimension The new 0-1 formulation is presented in Section 2.
Independent sets [7]  Exponential () - Section 3 is devoted to the description of some
Color per vertex [3,4] @:%) O(mm) 0= x(G)~1 structural properties aP (G), including facet defining
Acyclic orientations [5] @ +m)  Exponential 2 + 4m inequalities based on maximal cliques and odd holes
Representatives @+m) O(mm) n+2m

and anti-holes. Finally, we close the paper with some
conclusions and further directions in Section 4.

The first formulation mentioned in the table was
exploited by Mehrotra and Trick in a branch-and-
bound algorithm described in [7]. This formulation, 2. Representative formulation
called MIS (formaximal independent s¢tsises a bi-
nary variable for each maximal independent set of the ~ Throughout this papet; = (V, E) is a simple and
graph. Handling such an exponential number of vari- connected graph. Let us dendté| by n, |E| by m,
ables constitutes an apparent drawback of the MIS for- by G = (V, E) the complementary graph @ and
mulation. For this reason, some authors have proposed|E| by m. Forv € V, N(v) denotes the neighborhood
more compact alternative formulations. For instance, of v in G, while in G the neighborhood of is
Diaz and Zabala adopted a formulation that uses a denotedV (v). DefineN[v] = N (v) U {v} andN[v] =
variable to each possible color and vertex [3,4]. Alter- N(v) U {v}. Let S C V. For the sake of simplicity of
natively, Figueiredo et al. formulated the graph color- notation,S + v andS — v stand forS U {v} and S\{v},
ing problem in terms of an optimization problem over respectively. The common anti-neighborhoodSois
the set of acyclic orientations of the graph [5]. Partial given by N(S) = (,.s N (v). Write E[S] for the set
studies of the facial structure of the polytopes associ- of edges ofG[S], which in turn is the subgraph @f
ated with these alternative formulations are presented,induced bys. If S is such that;, v € S yieldsuv ¢ E,
respectively, in [3] and [5]. then S is anindependent sedf G. We use the easy
In this paper, we propose a new 0-1 integer facts:
programming formulation which is simpler and more
compact than other formulations in the literature. We (1) If u € V satisfiesN (u) = @ (in which case it is
also present a partial study of the structure of the calleduniversa), theny (G) = x (G —u) + 1.
polytope P(G) associated with this formulation. We (2) If u € V andS C N(u) is a set ofisolated vertices
show that certain particular substructuressoinduce in G[N (u)], that iSE[N (u)] = E[N(u) \ S, then
classes of facet defining inequalities. One example of x(G) = x(G —S).
such substructures is a maximal clique of the graph.
Since the size of any clique in the graph is a trivial to make the following assumption.
lower bound ofy (G), it seems natural that maximal
cligues induce constraints df(G) (this turns out to Assumption 1. G has no universal vertices and the
be indeed the case for the formulations studied in [3] anti-neighborhood of every vertex 6fhas no isolated
and [5]). However, cliques are not sufficient to express vertices.
all the intricate structural aspects related to graph
coloring. This is demonstrated by the existence of A coloring of G can be viewed as a family
triangle-free graphs with chromatic number arbitrarily S1, ..., S of kK > x(G) independent sets af, each
larger than 2 [6]. independent set in the family associated with a color.
The celebrated Strong Perfect Graph Theorem Suppose that, for each colgme choose a vertex to be
identifies two more substructures by stating tidat the representative of the corresponding color ckass
contains a clique of size (G), or an odd hole or  Then, each vertex can be in one of two states: either it
an odd anti-hole as an induced subgraph [1,2]. Not represents its color or there exists another vertex that
surprisingly, then, is that odd holes and anti-holes also representsits color. To describe such a situation, define
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the binary variables,,, for all u € V andv € N[u],
with the following interpretationx,, = 1 if and only if
u represents the color of A vectorx* that comprises

Proof. Let us consider the following: + 2m + 1
distinct vectors_inP(G): X, X" and X*¥, for all
u €V andv € N(u). To show that they are affinely

all of these binary variables is an incidence vector of independent, conside®, a,, (u € V,v € N(u)) and

a x (G)-coloring of G if, and only if, it minimizes
Y vev Xvo OVer all binary vectors such that

Z Xyp =1, (1)
ueN[v]
forall v € V and, for allu € V andvw € E[N (u)],

Xuv + Xyw < Xyu- (2)

Constraints of type (1) indicate that each vertex
v € V must be represented either by itself or by some
vertex in its anti-neighborhood. Since the endpoints
of every edge must be assigned distinct colors, con-
straints of type (2) assure that they have distinct repre-

sentatives. Observe thatife V andv € N(u), then

the inequalityx,, < x,, is a consequence of con-
straints (2) related ta, since it is assumed that there

are no isolated vertices iGi[N (u)].

The representative formulation described above is

a, (u e V), all of them inR, such that

A=ao+ ) au+ Y. an=0 (3)
ueV ueV, veN(u)

and

aoX + Z(mﬁ + Y a,wX’“’> =0. (4)

ueV veIV(u)

Thex,,, entries of each term in Eq. (4) give— a,, =
0, for all w € V. This fact, together with (3), results
that a,, = 0. Now, considering ther,,, entries, for
allweV,ze Nw), we easily getz,,, = 0. Finally,
Eq. (3) impliesag = 0. Therefore, we have2+n + 1
affinely independent vectors, as required

The facets described in the following theorem,

referred to as REP, for short. It can be seen as aalong W|th thosein Corollary 6,are SuffiCienttO ensure

variation of the MIS formulation that uses only 2in

that all variables of? (G) belong to the intervdlo, 1].

binary variables to represent the independent sets of

the graph.

3. Onthecoloring polytope

Now, we turn our attention to the polytoggG) =
conx € {0, 1}"+27 | x satisfies(1) and(2)}. Given a
pair of (not necessarily distinct) verticesv € V,
uv ¢ E, the incidence vector afv is x*?, defined in
the following way: for each/’ € V andv’ € N[u'], if
u'=u andv’ = v, thenx)? = 1; otherwisex", =
The following incidence vectors iR (G) are useful in
the proofs of this section:

¢ X=%, ¥

o X=X —x" 4x" foru eV and arepresenta-
tiver € N(u).

o X' =X+ x* forueV andve N®u).

First, the dimension oP (G) is established next.

Lemma?2. P(G) is full-dimensional, i.,edim(P(G)) =
n+ 2m.

Theorem 3. Bounding ine_qualitiesuu <landx,, >
0, for eachu € V andv € N (u), give facets o (G).

Proof. To prove each case of the theorem, we exhibit
n + 2m affinely independent vectors that satisfy the
corresponding inequality at equality. Lete V and

v € N(u). First, observe that,, = 1 holds for all
vectorsX and X*? and X?, for all w € V andz e
N(w), except for X*. By the proof of Lemma 2,
all of thesen + 2 vectors are affinely independent.
Further, for the inequality,, > 0, again it is satisfied
at equality by all vector&, Xz andX ™ but justX“?,
and this if we choose a representativg u for v in the
definition of X¥. Such a choice is possible sind&v)

is not a singleton, by Assumption 10

In each of the following theorems, in order to prove
that a faceF’ = {x € P(G) | M'x = B’} defines a facet
of P(G), we show that if a faceF = {x € P(G) |
Ax = B} of P(G) containsF’, then there exists € R
such thati = a)’ and 8 = ap’ [8]. We start with
constraints of type (1) of REP.
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Theorem 4. For eachv € V, the vertex inequality
> uenp)¥wv = 1 is a facet defining inequality of
P(G).

Proof. Let F’ be the facex € P(G) | X,y Xuv =
1} of P(G). It follows from F’ C F that F contains
X andX — x% 4+ x%%, for everyz € V andw € N(z).
Consequentlyp X = A(X — x** 4+ x™?%) = 8, leading
t0 A(x"? — x%) = Ay, — Ay, =0, andi,, = Ay, If
we takez # v, thenX 4 x** also belongs td@, which
means that (X + x%?) = B. Thus,Ax"* = A,,, = 0.
Therefore,Ax = Ayy Zueﬁ[v] xuv, Which concludes
the proof. O

Next, we present two classes of facet defining
inequalities related to substructures®f First, given
H C V, let us denote by y the maximum size of an
independent set af[H].

Theorem 5. Letu € V and H € N(u). The indepen-
dent set inequality) ", _ 5 xuy < agx,, is valid for
P(G). Moreover, it is facet defining if the following
properties hold

(P1) G[H] is ag-maximal which means that if
N@)> H' D H, thenay > ay; and

(P2) the graph formed byH and the safe edges of
G[H] is connected, where an edge in G[H]
is said to besafeif there exist two maximum
independent setS, and S,, of G[H] such that
Su\Sw = {v} and Sy, \ S, = {w}.

Observe that property (P1) above and Assumption 1
imply that|H| > 2.

Proof. Consideru € V, H € N(«) and an incidence
vectorx of a coloring ofG. If x,,, = 0, thenu cannot
be the representative of any vertex. Otherwise, jf=
1, then the vertices oH represented by form an
independent set, whose size is at megt Then, the
inequality is valid.

Now consider that properties (P1) and (P2) hold
for H.Let F' = {x € P(G) | }_ cp Xuv —
0}, we V, z e N(w) andS be a maximum indepen-
dentset ofGIH]. Write X5 =3, x" + Y ¢ X",
and notice thaks € F' C F.

First, we show the zero entries af The vectors
XS and X3 + x¥2, both in F, prove thati,, =0

QHXyu =
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whenw # u. They also prove the same result when
w=u and z ¢ H, in which case we need + z

to be an independent set of because, otherwise,
inequality (2) would be violated byand any neighbor
ofitin S. Property (P1) ensures that such&exists.

In addition, to prove that.,,, = 0 whenw # u, we
consider the pointXs + x? and X5 + x¥% — xWv,
They belong toF if we choosez # u, which is
possible becaus@’ (w)| > 2 by Assumption 1.

Let us examine the non-zero entries now. Initially,
consider a safe edgev of G[H]. Choose maximum
independent sets, and S,, such thatS,\S, = {v}
and S, \S, = {w}. It turns out that bothX% and
XS» belong to F, meaning that,, = A,,. By the
connectivity condition established by property (P2),
Auv = Auw €xtends for every, w € H. Finally, still
suppose thab € H. To show the relationship between
the entries of. associated withvu anduw, consider
the pointsX s 4+ x* andX™* — x“*, Since both belong
to F,we getO=Ax" + ) cgx*") = Auu + ¥ Ay
Thus, A, = —ag Ay, and the sufficient condition of
the theorem follows. O

Itis immediate to see that the properties of the latter
theorem hold for maximal cliques. More precisely, we
have

Corollary 6. Let u € V and K € N(u) such that
G[K] is a maximal clique ofG[N(u)]. Then, the
clique inequality) ", . x xuv < x4y is a facet defining
inequality of P(G).

The previous corollary has two important conse-
quences. First, clique inequalities and the facet defin-
ing inequalities of Theorem 3 imply that all variables
of P(G) belong to the intervdl0, 1]. Hencex,, >0
andx,, < 1, forallu € V andv € N(«), do not define
facets ofP(G). Second, constraint of type (2) does not
define a facet of?(G) if vw is not a maximal clique
of N(u). The argument here is that whenever (2) is
satisfied at equality, so is the clique inequality for a
maximal clique ofG[N («)] that containgw.

Define anodd holeas an induced chordless cycle
on an odd number of vertices, and add anti-hole
as the complement of an odd hole. Theorem 5 is also
concerned with these substructures.
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Corollary 7. 1fu € V, H C N(u) induces an odd hole
or anti-hole, and propertyfP1) of Theoremb holds,
then the independent set inequality associated with
and H is a facet defining inequality a?(G).
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u ¢ H, then we can také as large as necessary to
accommodatdu} in S. The desired result follows
since XS + x"¥ also satisfies (5) at equality. For the
second case, we assume that V \ H, and we need
to show that.,, = 0. By Assumption 1y has an anti-

Next, we establish the second class of facet defining neighboru. Hence, we choose af that includes the

inequalities associated with substructurescaf We
say that a subgrap&[H] of G is x (G[H])-critical
if x(G[H —v])=x(G[H])—1,forallve H.

Theorem 8. If H C V, then

Dxw+ Y. D x> x(GIH])

veH UeHue]V(v)\H

®)

is a valid inequality for RG). In addition, the chro-
matic number inequality5) is facet defining iiG[H]
is x (G[H])-critical and G[H] is connected.

Notice that if |[H| = 1, then we have the vertex

inequality considered in Theorem 4. Thus, we assume j ¢ H, and A

in the proofthatH| > 2.

Proof. In any coloring ofG, each color appearing in

H adds 1 either to the first or to the second term of the

left hand-side of inequality (5). Since at leaSiG[H])
colors are necessary to col6i H], this inequality is
valid.

Let H C V be such thaG[H] is x (G[H])-critical

color clasqu, v}, with u representing. The existence
of such anS stems from the same argument as before.
Thus, X° + x? satisfies (5) at equality and leads to
Avp = 0, as required.

For the non-zero entries a&f initially we show that
if ve H anduv ¢ E, then bothh,, = A, andi,, =
Auu, respectively ifu ¢ H andu € H. Again because
G[H] is x(G[H])-critical, we choose the coloring
containing{u, v} and havingv as its representative,
no matteru belongs toH or not. Then,X° and
XS — xVV — xVu 4 x4 UV satisfy (5) at equality.
Onceir,, =0, due tov € H, the desired results follow
by using these vectors and recalling thgt, = 0O,
« = 0, otherwise. Finally, suppose
u,v € H anduv € E. It follows from the connectivity
of G[H] that there exists a path= vy, ..., v, = v in
G[H], leading to

)"uu = )\vlvl == )"vgvg = )‘vv-

This shows that.,, = A,,, for all u, v € H, conclud-
ing the proof for the non-zero entries bf This also

and G[H] is connected. Once again, in order to concludes the proof of the theorem

show that inequality (5) is facet defining, we are

concerned with solutions to the linear system =
B, but this time over colorings that satisfy (5) at

It should be noted that, iIG[H] is x(G[H])-

equality. For each case that occurs in the proof, we critical andG[H] is disconnected, then inequality (5)

proceed by choosing a coloring = {51, ..., S} of
G usingk > x(G) colors such thals, ..., S, GH))
is a cover of H. Once such a coloring is chosen,
we take as its incidence vectorX® such that the
representative af; is some vertex irH if and only if
i €{1,..., x(G[H])}. This choice ofxS satisfies (5)
at equality.

To show the zero entries af, there are two cases.
In the first case, we take two anti-neighbarseind v
such thatu € H or v ¢ H and show that,, = 0.
The coloringS chosen in this case is such tht=
{u}, for somei € {1, ..., k}. The existence of such a
coloring is guaranteed by two facts. First,uife H,
then G[H — u] can be colored withy (G[H]) — 1
colors becaus6&|[H] is x (G[H])-critical. Second, if

is not facet defining. For, let, ..., Hy, £ > 1, be
the subsets off inducing the connected components
of G[H]. It turns out that every independent set of
G[H] intersects only oneH;. Thus, eachG[H;] is

X (GLH;)-critical and x (G[H]) = Y"{_; x(G[H;)).
This means that (5) is the summation of $h@G[ H;])-
critical inequalities, foralf =1, ..., ¢.

Corollary 9. If G[H] is an odd hole or anti-hole, then
(5) is facet defining for RG).

Proof. If G[H] is an odd hole or anti-hole, then it is
3-or (|H| + 1)/2-critical, respectively [1]. Moreover,
G[H] is clearly connected in both casesa
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