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Abstract

Certain subgraphs of a given graphG restrict the minimum numberχ(G) of colors that can be assigned to the vertices oG
such that the endpoints of all edges receive distinct colors. Some of such subgraphs are related to the celebrated Str
Graph Theorem, as it implies that every graphG contains a clique of sizeχ(G), or an odd hole or an odd anti-hole as an indu
subgraph. In this paper, we investigate the impact of induced maximal cliques, odd holes and odd anti-holes on the
associated with a new 0–1 integer programming formulation of the graph coloring problem. We show that they induce
of facet defining inequalities.
 2003 Elsevier B.V. All rights reserved.
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1. Introduction Observe that there exists a coloring ofG with χ(G)
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Given a graphG = (V ,E), whereV is its set of
vertices andE its set of edges, and a positive integerk,
a k-coloring of G (or, more generally, acoloring
of G) is an assignment of colors from{1, . . . , k}
to the vertices ofG so that each vertex receives
least one color and the endpoints of all edges
assigned different colors. Thegraph coloring problem
is defined as the problem of finding the minimu
number of colorsχ(G), known as thechromatic
numberof G, such thatG admits aχ(G)-coloring.
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color.
Describing optimal solutions of the graph colori

problem is one of the most challenging problems
combinatorial optimization. One possible approac
to formulate the problem as a 0–1 integer progra
This approach has received a considerable atten
in the last years, as the formulations depicted
Table 1 indicate. The notation adopted in the ta
is n for the number of vertices ofG, m for its
number of edges andm for the number of edge
of the complement ofG. For each formulation, it is
presented the number of binary variables employ
the number of linear constraints, the dimension
the corresponding polytope and a reference in
literature.

.
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Table 1
0–1 integer programming formulations of the graph coloring prob-
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have some influence inP(G). We show some facet
defining inequalities based on them.
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Formulation Variables Constraints Dimension

Independent sets [7] Exponential O(n) –
Color per vertex [3,4] O(n2) O(nm) n2 − χ(G)− 1
Acyclic orientations [5] O(n+m) Exponential 2n+ 4m
Representatives O(n+m) O(nm) n+ 2m

The first formulation mentioned in the table w
exploited by Mehrotra and Trick in a branch-an
bound algorithm described in [7]. This formulatio
called MIS (formaximal independent sets), uses a bi-
nary variable for each maximal independent set of
graph. Handling such an exponential number of v
ables constitutes an apparent drawback of the MIS
mulation. For this reason, some authors have propo
more compact alternative formulations. For instan
Díaz and Zabala adopted a formulation that use
variable to each possible color and vertex [3,4]. Alt
natively, Figueiredo et al. formulated the graph col
ing problem in terms of an optimization problem ov
the set of acyclic orientations of the graph [5]. Par
studies of the facial structure of the polytopes ass
ated with these alternative formulations are presen
respectively, in [3] and [5].

In this paper, we propose a new 0–1 integ
programming formulation which is simpler and mo
compact than other formulations in the literature.
also present a partial study of the structure of
polytopeP(G) associated with this formulation. W
show that certain particular substructures ofG induce
classes of facet defining inequalities. One exampl
such substructures is a maximal clique of the gra
Since the size of any clique in the graph is a triv
lower bound ofχ(G), it seems natural that maxim
cliques induce constraints ofP(G) (this turns out to
be indeed the case for the formulations studied in
and [5]). However, cliques are not sufficient to expr
all the intricate structural aspects related to gra
coloring. This is demonstrated by the existence
triangle-free graphs with chromatic number arbitrar
larger than 2 [6].

The celebrated Strong Perfect Graph Theor
identifies two more substructures by stating thatG

contains a clique of sizeχ(G), or an odd hole or
an odd anti-hole as an induced subgraph [1,2].
surprisingly, then, is that odd holes and anti-holes a
The rest of the paper is organized as follow
The new 0–1 formulation is presented in Section
Section 3 is devoted to the description of so
structural properties ofP(G), including facet defining
inequalities based on maximal cliques and odd ho
and anti-holes. Finally, we close the paper with so
conclusions and further directions in Section 4.

2. Representative formulation

Throughout this paper,G= (V ,E) is a simple and
connected graph. Let us denote|V | by n, |E| by m,
by G = (V ,E) the complementary graph ofG and
|E| bym. Forv ∈ V , N(v) denotes the neighborhoo
of v in G, while in G the neighborhood ofv is
denotedN(v). DefineN[v] =N(v)∪ {v} andN[v] =
N(v) ∪ {v}. Let S ⊆ V . For the sake of simplicity o
notation,S + v andS− v stand forS ∪ {v} andS\{v},
respectively. The common anti-neighborhood ofS is
given byN(S) = ⋂

v∈S N(v). Write E[S] for the set
of edges ofG[S], which in turn is the subgraph ofG
induced byS. If S is such thatu,v ∈ S yieldsuv /∈E,
thenS is an independent setof G. We use the eas
facts:

(1) If u ∈ V satisfiesN(u) = ∅ (in which case it is
calleduniversal), thenχ(G)= χ(G− u)+ 1.

(2) If u ∈ V andS ⊆N(u) is a set ofisolated vertices
in G[N(u)], that isE[N(u)] =E[N(u) \ S], then
χ(G)= χ(G− S).

to make the following assumption.

Assumption 1. G has no universal vertices and t
anti-neighborhoodof every vertex ofG has no isolated
vertices.

A coloring of G can be viewed as a famil
S1, . . . , Sk of k � χ(G) independent sets ofG, each
independent set in the family associated with a co
Suppose that, for each colori, we choose a vertex to b
the representative of the corresponding color classSi .
Then, each vertex can be in one of two states: eith
represents its color or there exists another vertex
represents its color. To describe such a situation, de
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the binary variablesxuv , for all u ∈ V andv ∈ N [u],
with the following interpretation:xuv = 1 if and only if
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Proof. Let us consider the followingn + 2m + 1
distinct vectors inP(G): X, Xū and Xuv , for all
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u represents the color ofv. A vectorx∗ that comprises
all of these binary variables is an incidence vector
a χ(G)-coloring of G if, and only if, it minimizes∑
v∈V xvv over all binary vectorsx such that∑

u∈N [v]
xuv � 1, (1)

for all v ∈ V and, for allu ∈ V andvw ∈E[N(u)],
xuv + xuw � xuu. (2)

Constraints of type (1) indicate that each ver
v ∈ V must be represented either by itself or by so
vertex in its anti-neighborhood. Since the endpo
of every edge must be assigned distinct colors, c
straints of type (2) assure that they have distinct re
sentatives. Observe that ifu ∈ V andv ∈ N(u), then
the inequalityxuv � xuu is a consequence of con
straints (2) related tou, since it is assumed that the
are no isolated vertices inG[N(u)].

The representative formulation described abov
referred to as REP, for short. It can be seen a
variation of the MIS formulation that uses onlyn+2m
binary variables to represent the independent set
the graph.

3. On the coloring polytope

Now, we turn our attention to the polytopeP(G)=
conv{x ∈ {0,1}n+2m | x satisfies(1) and(2)}. Given a
pair of (not necessarily distinct) verticesu,v ∈ V ,
uv /∈ E, the incidence vector ofuv is xuv , defined in
the following way: for eachu′ ∈ V andv′ ∈ N [u′], if
u′ = u andv′ = v, thenxuv

u′v′ = 1; otherwise,xuv
u′v′ = 0.

The following incidence vectors inP(G) are useful in
the proofs of this section:

• X = ∑
u∈V xuu.• Xū =X− xuu + xru, for u ∈ V and a representa

tive r ∈N(u).
• Xuv =X+ xuv , for u ∈ V andv ∈N(u).

First, the dimension ofP(G) is established next.

Lemma 2. P(G) is full-dimensional, i.e.,dim(P (G))=
n+ 2m.
u ∈ V andv ∈ N(u). To show that they are affinel
independent, considera0, auv (u ∈ V,v ∈ N(u)) and
au (u ∈ V ), all of them inR, such that

A= a0 +
∑
u∈V

au +
∑

u∈V, v∈N(u)
auv = 0 (3)

and

a0X+
∑
u∈V

(
auX

ū +
∑
v∈N(u)

auvX
uv

)
= 0. (4)

Thexww entries of each term in Eq. (4) giveA−aw =
0, for all w ∈ V . This fact, together with (3), result
that aw = 0. Now, considering thexwz entries, for
all w ∈ V , z ∈ N(w), we easily getawz = 0. Finally,
Eq. (3) impliesa0 = 0. Therefore, we have 2m+n+1
affinely independent vectors, as required.✷

The facets described in the following theore
along with those in Corollary 6, are sufficient to ens
that all variables ofP(G) belong to the interval[0,1].

Theorem 3. Bounding inequalitiesxuu � 1 andxuv �
0, for eachu ∈ V andv ∈N(u), give facets ofP(G).

Proof. To prove each case of the theorem, we exh
n + 2m affinely independent vectors that satisfy t
corresponding inequality at equality. Letu ∈ V and
v ∈ N(u). First, observe thatxuu = 1 holds for all
vectorsX andXwz andXw̄ , for all w ∈ V and z ∈
N(w), except forXū. By the proof of Lemma 2
all of thesen + 2m vectors are affinely independen
Further, for the inequalityxuv � 0, again it is satisfied
at equality by all vectorsX,Xwz andXw̄ but justXuv ,
and this if we choose a representativer �= u for v in the
definition ofXv̄ . Such a choice is possible sinceN(v)
is not a singleton, by Assumption 1.✷

In each of the following theorems, in order to pro
that a faceF ′ = {x ∈ P(G) | λ′x = β ′} defines a face
of P(G), we show that if a facetF = {x ∈ P(G) |
λx = β} of P(G) containsF ′, then there existsa ∈ R

such thatλ = aλ′ and β = aβ ′ [8]. We start with
constraints of type (1) of REP.
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Theorem 4. For each v ∈ V , the vertex inequality∑
xuv � 1 is a facet defining inequality of
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Proof. Let F ′ be the face{x ∈ P(G) | ∑u∈N[v] xuv =
1} of P(G). It follows from F ′ ⊆ F thatF contains
X andX− xzz + xwz, for everyz ∈ V andw ∈N(z).
Consequently,λX = λ(X − xzz + xwz) = β , leading
to λ(xwz − xzz) = λwz − λzz = 0, andλzz = λwz. If
we takez �= v, thenX+ xwz also belongs toF , which
means thatλ(X + xwz) = β . Thus,λxwz = λwz = 0.
Therefore,λx = λvv

∑
u∈N [v] xuv, which concludes

the proof. ✷
Next, we present two classes of facet defin

inequalities related to substructures ofG. First, given
H ⊆ V , let us denote byαH the maximum size of an
independent set ofG[H ].

Theorem 5. Let u ∈ V andH ⊆ N(u). The indepen
dent set inequality

∑
v∈H xuv � αHxuu is valid for

P(G). Moreover, it is facet defining if the followin
properties hold:

(P1) G[H ] is αH -maximal, which means that i
N(u)⊃H ′ ⊃H , thenαH ′ > αH ; and

(P2) the graph formed byH and the safe edges o
G[H ] is connected, where an edgevw in G[H ]
is said to besafe if there exist two maximum
independent setsSv and Sw of G[H ] such that
Sv\Sw = {v} andSw\Sv = {w}.

Observe that property (P1) above and Assumptio
imply that|H | � 2.

Proof. Consideru ∈ V , H ⊆ N(u) and an incidence
vectorx of a coloring ofG. If xuu = 0, thenu cannot
be the representative of any vertex. Otherwise, ifxuu =
1, then the vertices ofH represented byu form an
independent set, whose size is at mostαH . Then, the
inequality is valid.

Now consider that properties (P1) and (P2) h
for H . Let F ′ = {x ∈ P(G) | ∑

v∈H xuv − αHxuu =
0}, w ∈ V , z ∈ N(w) andS be a maximum indepen
dent set ofG[H ]. WriteXS = ∑

v∈V xvv+∑
v∈S xuv ,

and notice thatXS ∈ F ′ ⊆ F .
First, we show the zero entries ofλ. The vectors

XS andXS + xwz, both in F , prove thatλwz = 0
to be an independent set ofG because, otherwise
inequality (2) would be violated byz and any neighbo
of it in S. Property (P1) ensures that such anS exists.
In addition, to prove thatλww = 0 whenw �= u, we
consider the pointsXS + xzw andXS + xzw − xww.
They belong toF if we choosez �= u, which is
possible because|N(w)| � 2 by Assumption 1.

Let us examine the non-zero entries now. Initia
consider a safe edgevw of G[H ]. Choose maximum
independent setsSv and Sw such thatSv\Sw = {v}
and Sw\Sv = {w}. It turns out that bothXSv and
XSw belong toF , meaning thatλuv = λuw . By the
connectivity condition established by property (P
λuv = λuw extends for everyv,w ∈ H . Finally, still
suppose thatw ∈H . To show the relationship betwee
the entries ofλ associated withuu anduw, consider
the pointsXS+xwu andXwu−xuu. Since both belong
to F , we get 0= λ(xuu+ ∑

v∈S xuv)= λuu+ αHλuw.
Thus,λuu = −αHλuw and the sufficient condition o
the theorem follows. ✷

It is immediate to see that the properties of the la
theorem hold for maximal cliques. More precisely,
have

Corollary 6. Let u ∈ V and K ⊆ N(u) such that
G[K] is a maximal clique ofG[N(u)]. Then, the
clique inequality

∑
v∈K xuv � xuu is a facet defining

inequality ofP(G).

The previous corollary has two important cons
quences. First, clique inequalities and the facet de
ing inequalities of Theorem 3 imply that all variabl
of P(G) belong to the interval[0,1]. Hence,xuu � 0
andxuv � 1, for allu ∈ V andv ∈N(u), do not define
facets ofP(G). Second, constraint of type (2) does n
define a facet ofP(G) if vw is not a maximal clique
of N(u). The argument here is that whenever (2)
satisfied at equality, so is the clique inequality fo
maximal clique ofG[N(u)] that containsvw.

Define anodd holeas an induced chordless cyc
on an odd number of vertices, and anodd anti-hole
as the complement of an odd hole. Theorem 5 is a
concerned with these substructures.
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Corollary 7. If u ∈ V ,H ⊂N(u) induces an odd hole
or anti-hole, and property(P1) of Theorem5 holds,
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then the independent set inequality associated wiu
andH is a facet defining inequality ofP(G).

Next, we establish the second class of facet defin
inequalities associated with substructures ofG. We
say that a subgraphG[H ] of G is χ(G[H ])-critical
if χ(G[H − v])= χ(G[H ])− 1, for all v ∈H .

Theorem 8. If H ⊆ V , then∑
v∈H

xvv +
∑
v∈H

∑
u∈N(v)\H

xuv � χ
(
G[H ]) (5)

is a valid inequality for P(G). In addition, the chro-
matic number inequality(5) is facet defining ifG[H ]
is χ(G[H ])-critical andG[H ] is connected.

Notice that if |H | = 1, then we have the verte
inequality considered in Theorem 4. Thus, we assu
in the proof that|H | � 2.

Proof. In any coloring ofG, each color appearing i
H adds 1 either to the first or to the second term of
left hand-side of inequality (5). Since at leastχ(G[H ])
colors are necessary to colorG[H ], this inequality is
valid.

LetH ⊆ V be such thatG[H ] is χ(G[H ])-critical
and G[H ] is connected. Once again, in order
show that inequality (5) is facet defining, we a
concerned with solutions to the linear systemλx =
β , but this time over coloringsx that satisfy (5) at
equality. For each case that occurs in the proof,
proceed by choosing a coloringS = {S1, . . . , Sk} of
G usingk � χ(G) colors such thatS1, . . . , Sχ(G[H ])
is a cover ofH . Once such a coloring is chose
we take as its incidence vector aXS such that the
representative ofSi is some vertex inH if and only if
i ∈ {1, . . . , χ(G[H ])}. This choice ofXS satisfies (5)
at equality.

To show the zero entries ofλ, there are two case
In the first case, we take two anti-neighborsu andv
such thatu ∈ H or v /∈ H and show thatλuv = 0.
The coloringS chosen in this case is such thatSi =
{u}, for somei ∈ {1, . . . , k}. The existence of such
coloring is guaranteed by two facts. First, ifu ∈ H ,
thenG[H − u] can be colored withχ(G[H ]) − 1
colors becauseG[H ] is χ(G[H ])-critical. Second, if
sinceXS + xuv also satisfies (5) at equality. For th
second case, we assume thatv ∈ V \H , and we need
to show thatλvv = 0. By Assumption 1,v has an anti-
neighboru. Hence, we choose anS that includes the
color class{u,v}, with u representingv. The existence
of such anS stems from the same argument as befo
Thus,XS + xvv satisfies (5) at equality and leads
λvv = 0, as required.

For the non-zero entries ofλ, initially we show that
if v ∈H anduv /∈ E, then bothλvv = λuv andλvv =
λuu, respectively ifu /∈H andu ∈H . Again because
G[H ] is χ(G[H ])-critical, we choose the coloringS
containing{u,v} and havingv as its representative
no matteru belongs toH or not. Then,XS and
XS − xvv − xvu + xuu + xuv satisfy (5) at equality
Onceλvu = 0, due tov ∈H , the desired results follow
by using these vectors and recalling thatλuu = 0,
if u /∈ H , and λuv = 0, otherwise. Finally, suppos
u,v ∈H anduv ∈E. It follows from the connectivity
of G[H ] that there exists a pathu= v1, . . . , v! = v in
G[H ], leading to

λuu = λv1v1 = · · · = λv!v! = λvv.
This shows thatλvv = λuu, for all u,v ∈H , conclud-
ing the proof for the non-zero entries ofλ. This also
concludes the proof of the theorem.✷

It should be noted that, ifG[H ] is χ(G[H ])-
critical andG[H ] is disconnected, then inequality (
is not facet defining. For, letH1, . . . ,H!, ! > 1, be
the subsets ofH inducing the connected componen
of G[H ]. It turns out that every independent set
G[H ] intersects only oneHi . Thus, eachG[Hi] is
χ(G[Hi])-critical and χ(G[H ]) = ∑!

i=1χ(G[Hi]).
This means that (5) is the summation of theχ(G[Hi])-
critical inequalities, for alli = 1, . . . , !.

Corollary 9. If G[H ] is an odd hole or anti-hole, the
(5) is facet defining for P(G).

Proof. If G[H ] is an odd hole or anti-hole, then it
3- or (|H | + 1)/2-critical, respectively [1]. Moreove
G[H ] is clearly connected in both cases.✷
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4. Concluding remarks
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One major difficulty in solving the vertex colo
ing problem on a given graph is to appropriately co
its induced maximal cliques, odd holes and odd a
holes. It is natural, then, that these structures pla
central role when characterizing optimal colorings.
this context, we proposed a new 0–1 integer progr
ming formulation of the vertex coloring problem an
we showed that the aforementioned structures ind
facets of the associated polytope. This formulation
simpler and more compact than other formulations
the literature. In particular, it can be seen as a va
tion of the MIS formulation that uses only O(n+m)
binary variables to represent the independent set
the graph. However, at the same time that this
mulation is more compact, it presents some sym
try since there exist|S| different assignments to th
variables that represent an arbitrary independent sS.
This is not alarming because establishing an orde
the vertices beforehand, which also defines an o
on the different representations of each indepen
set, makes it possible to distinguish a single varia
assignment to representS. This astuteness breaks t
symmetry of the formulation. Some problems rem
open, though, when one thinks about efficient imp
mentations using this formulation. The most intrig
ing being related to the design of effective heurist
to tackle the separation problem related to the m
mal cliques and, mainly, to the induced odd holes
anti-holes.
The authors would like to thank Victor Camp
for his comments on Theorem 5. Also, the auth
are indebted to the anonymous referee for the car
reading and useful suggestions.
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