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Polyhedral Studies on vertex coloring problems

Background

Given a graph G = (V,E), a vertex coloring of G is an assignment c : V → N of “colors” to vertices of G, such
that c(v) 6= c(w) for each edge vw ∈ E. The classical vertex coloring problem consists in finding a coloring of G
minimizing the number of required colors. This parameter is widely known as the chromatic number of G, and
is denoted as χ(G). There are many variants for the graph coloring problem, some of them being: Precoloring
extension [1], µ-coloring [2], (γ, µ)-coloring [3], List coloring [14] and many other variants.

Although the classical vertex coloring problem is NP-hard [9], there are many graph classes for which this problem
can be solved in polynomial time, one of the most important classes being perfect graphs [10]. However, the
variants of the coloring problem mentioned above may not be polynomially solvable on these graphs. On [3, 4],
the complexity boundary between coloring and list-coloring is studied for several subclasses of perfect graphs.

In the last decade, Integer linear programming (ILP) has been succesfully applied to graph coloring problems, by
resorting to several formulations for the classical version of the problem. The Standard formulation uses a binary
variable xic for each vertex i ∈ V and each color c to indicate wether vertex i is assigned color c or not. There are
many other known formulations such as the Orientation model [5], the Distance model [8], the Representatives
formulation [6, 7] and the Maximal Independant Sets formulation [12], among others.

In general, solving an ILP is NP-hard. However, in many cases, a complete description of the convex hull of its
solutions is known and this description can be used to solve the separation problem for the polytope associated to
the formulation in polynomial time [13]. Based on the ellipsoid method, Gröschel, Lovász and Schrijver [11] proved
that the separation problem and the optimization problem over a polytope are polynomially equivalent. From this
equivalence, there exists a generalized conjecture suggesting that if a combinatorial optimization problem can be
solved in polynomial time, then there should exist some ILP formulation of the problem for which the convex hull
of its solutions admits an “elegant” characterization; formally, for which the separation problem over this polytope
can be solved in polynomial time.

Despite the fact that many vertex coloring problems are polynomially solvable on certain graph classes, most of
these problems are not “under control” from a polyhedral standpoint. The mentioned equivalence between opti-
mization and separation suggests that, for these problems, there must exist formulations admiting some elegant
characterization for the polytopes associated to them, therefore it is interesting to study the mentioned formula-
tions (if not others) with the goal of finding such characterizations for these problems.

In this sense, some work has been done on the Standard formulation and nice characterizations were found for
some simple graph classes such as trees and block graphs. Also, some general results imply that the separation
problem associated to this formulation cannot be solved in polynomial time when the list coloring problem on the
family analyzed is NP-complete, meaning that this formulation falls short too soon. Therefore, one direct next
step on this line of work would be to study these families via other formulation.
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The Assymetric Representatives Formulation [7]

Given a graph G = (V,E) and an order ≺ on the set of vertices, the set of anti-neighbours of a vertex u ∈ V ,
N̄(u) = {v ∈ V / uv /∈ E}, can be splitted into its negative anti-neighbourhood N̄−(u) = {v ∈ N̄(u) / v ≺ u}
and its positive anti-neighbourhood N̄+(u) = {v ∈ N̄(u) / u ≺ v}. In the Assymetric Representatives Formulation
for the classical vertex coloring problem, for each u ∈ V there is a binary variable xuu stating whether u is the
representative of its own color class or not. Additionally, for each v ∈ N̄+(u), a binary variable xuv states whether
vertex u is the representative of the color class assigned to vertex v or not. With these definitions, a vector
satisfying

xuu +
∑

v∈N̄−(u)

xvu = 1 ∀u ∈ V (1)

∑
v∈K

xuv ≤ xuu ∀u ∈ V, ∀ clique K ⊆ N̄+(u) (2)

xuu, xuv ∈ {0, 1} ∀u ∈ V, ∀v ∈ N̄+(u),

represents a proper coloring of G.

In the above formulation, every variable xuu can be cleared from equation (1) to be

xuu = 1−
∑

v∈N̄−(u)

xvu.

Hence, these variables can be eliminated from the formulation rewriting constraints (2) as∑
v∈N̄−(u)

xvu +
∑
v∈K

xuv ≤ 1 ∀u ∈ V, ∀ clique K ⊆ N̄+(u) (3)

It is easy to see that the polytope described by (3) is the Stable Set Polytope on some special graph H(G). This
graph H(G), has one vertex for each edge of G, and two vertices are adjacent in H(G) if the corresponding edges
in G appear in the same constraint from (3). Therefore, a complete characterization of STAB(H(G)) would yield
a complete characterization of the vertex coloring polytope associated to the representatives formulation for the
original graph G.

Since the stable set polytope has been widely and deeply studied, an interesting approach on finding nice charac-
terizations for vertex coloring polytopes associated to some graph families would be to study the graphs obtained
from these families, as described above.

Proposed lines of work and main objectives

Given a family G of graphs, we want to study the family H(G) = {H(G) / G ∈ G}, since a complete characteri-
zation of the Stable Set polytope associated to H(G), STAB(H(G)), will give us a complete characterization of
the vertex coloring polytope associated to G, V COL(G). After obtaining some characterization for V COL(G),
it will be interesting to “reinterpret” the valid inequalities for STAB(H(G)) but now in the context of the vertex
coloring and the original meaning of the variables.

Following this line of work, as a first result we proved that if G are the complements of triangle-free graphs, then
H(G) are line graphs of G. As the STAB for line graphs is completely characterized, we have now a complete
characterization for V COL for complements of triangle-free graphs. An interesting approach would be to detect
those graph families G for wich STAB(H(G)) is known, such as perfect graphs. Yet if STAB(H(G)) is not
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already known but widely studied, the latter would be also interesting, e.g., if H(G) are claw-free graphs, as the
general intuiton is that a characterization for this STAB will appear sooner or later.

A direct polyhedral study over V COL(G) would be also an interesting line of work. In this sense, one (unchecked
yet) first result imply that the separation/optimization problem over V COL(G) can be solved in polynomial time
if and only if the same occurs for the Precoloring Extension polytope associated to G1. This result will imply that
if Precoloring Extension over G is an NP-complete problem, then the separation problem over V COL(G) cannot
be solved in polynomial time and this would narrow the set of candidate families to study. A direct consequence
of this result among the one in the previous paragraph is that the Precoloring Extension problem on complements
of triangle-free graphs can be solved in polynomial time.

Another proposed line of work is to use some other methods on the construction of H(G). It may be possible to
derive another graph from G such as some polytope on this other graph is completely characterized.
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[6] M. Campêlo, R. Corrêa, and Y. Frota, Cliques, holes and the vertex coloring polytope. Inf. Process. Lett. 89-4
(2004) 159–164.
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1Sketch of the proof: the Precoloring Extension polytope can be obtained by reordering the vertices to start with the precolored
ones and fixing some representative on each precolored class. As we have a {0,1}-polytope, the resulting polytope via this fixings is
known, if the original polytope is also known.
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