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Classical vertex coloring problem and variants

Given a graph G = (V ,E), find an assignment c : V → N such
that c(v) 6= c(w) for every vw ∈ E .

Other vertex coloring problems:

Pre-coloring extension: some vertices v ∈ V are pre-colored
(i.e., c(v) is fixed for these vertices).

µ-coloring: each vertex has an upper bound, µ(v), for its
assigned color (i.e., c(v) must be at most µ(v)).

(γ, µ)-coloring: in addition to µ(v), each vertex has a lower
bound, γ(v), for its color (i.e., c(v) must be at least γ(v)).

List-coloring: each vertex has a list, L(v), of possible colors for it
(i.e., c(v) must belong to L(v)).
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Classical vertex coloring problem and variants

These problems
can be arranged in
the following
complexity
hierarchy:
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Classical vertex coloring problem and variants

Complexity boundary for some graph families:

Class Coloring Pre-col µ-col (γ, µ)-col List-col
Complete bipartite P P P P NP-c
Bipartite P NP-c NP-c NP-c NP-c
Cographs P P P ? NP-c
Distance-hereditary P NP-c NP-c NP-c NP-c
Interval P NP-c NP-c NP-c NP-c
Unit interval P NP-c NP-c NP-c NP-c
Complete split P P P P NP-c
Split P P NP-c NP-c NP-c
Line of Kn,n P NP-c NP-c NP-c NP-c
Line of Kn P NP-c NP-c NP-c NP-c
Complements of bipartites P P ? ? NP-c
Trees P P P P P
Block P P P P P
Cacti P P P P P

“NP-c”: NP-complete problem “P”: polynomial problem “?”: open problem
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Standard IP formulation
(Coll et al., 2002; Mendez Díaz & Zabala, 2006, 2008)

Given a graph G = (V ,E) and a set of colors C, the standard
IP formulation for vertex coloring problems uses a binary
variable xic for every vertex i ∈ V and every color c ∈ C subject
to the following constraints:

∑
c∈C

xic = 1 ∀i ∈ V

xic + xjc ≤ 1 ∀ij ∈ E , ∀c ∈ C
xic ∈ {0,1} ∀i ∈ V ,∀c ∈ C

Observation: this formulation can be extended with a binary variable wc for
each color c ∈ C indicating whether c is used in the assignment or not.
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Orientation model
(Borndörfer et al., 1998)

For i ∈ V , an integer variable xi is used to represent the color
assigned to i . It introduces a binary orientation variable yij for
each ij ∈ E such that yij = 1 if and only if xi < xj .

yij + yji = 1 ∀ij ∈ E , i < j
xi − xj ≥ 1− (|V |+ 1)yij ∀ij ∈ E , i < j
−xi + xj ≥ 1− (|V |+ 1)yji ∀ij ∈ E , i < j

xi ∈ Z ∀i ∈ V
yij ∈ {0,1} ∀ij ∈ E .
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Distance model
(D. & Marenco, 2009)

For each pair of vertices i , j ∈ V with i < j , an integer variable
xij determines the distance between the assigned to i and j .
Orientation binary variables yij are also used as in the previous
orientation model.

yij + yji = 1 ∀ij ∈ E , i < j
xij = xik + xkj ∀i , k , j ∈ V , i < k < j (!)

−(|C| − 1) ≤ xij ≤ |C| − 1 ∀i , j ∈ V , i < j
xij ≥ 1− |C|yij ∀ij ∈ E , i < j
xji ≥ 1− |C|yji ∀ij ∈ E , i < j
xij ∈ Z ∀i , j ∈ V , i < j

yij , yji ∈ {0,1} ∀ij ∈ E , i < j
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Maximal Independent Sets (MIS) model
(Mehrotra & Trick, 1996)

For each maximal stable set S ⊆ V , a binary variable xS is
used to determine if S is used in the coloring, i.e., S represents
a color class.

∑
S:i∈S

xS ≥ 1 ∀i ∈ V

xS ∈ {0,1} ∀S ∈ S(G)

where S(G) contains every maximal stable set of G.
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Representatives model
(Campêlo et al., 2004)

For i ∈ V and j ∈ N̄[v ], a binary variable xij determines if i is the
representative of the color class assigned to j .

∑
i∈N̄[j]

xij ≥ 1 ∀j ∈ V

xij + xik ≤ xii ∀i ∈ V , ∀jk ∈ E : j , k ∈ N̄(i)
xij ∈ {0,1} ∀i ∈ V , ∀j ∈ N̄[i].

Observation: this formulation can be seen as a variant of the MIS model
using only n + 2m̄ variables.
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Optimization and separation problems

Let P be a convex and compact set in Rn. The following are two
well-known algorithmic problems in connection with P:

Definition (Optimization problem)

Given a vector c ∈ Rn, find a vector y that maximizes cT x on P,
or assert that P is empty.

Definition (Separation problem)

Given a vector y ∈ Rn, decide whether y ∈ P and, if not, find a
hyperplane that separates y from P; i.e., find a vector c ∈ Rn

such that cT y > max{cT x : x ∈ P}.
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Optimization and separation problems

In 1981, Gröschel, Lovász and Schrijver proved a fundamental
theorem for polyhedral theory:

Theorem (Gröschel, Lovász and Schrijver, 1981)

Given a convex and compact set P ∈ Rn, the optimization
problem over P can be solved in polynomial time if and only if
the separation problem over P can be solved in polynomial
time.
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The generalized conjecture

This result leads to the following (generalized) conjecture:

Conjecture
Given a problem P, if there exists a polynomial time algorithm
to solve it, then there is a “decent” linear programming model
describing the feasible solutions of P.

To find such characterizations for graph coloring problems is
the main objective of our work!
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Motivation

Why?
Theorethical: To complete the polyhedral counterpart of
combinatorially-solved graph coloring problems.
Practical: Studying these polytopes may lead us to
(polyhedrally) solve some other open problems.
Spiritually: To know a little more about our universe! :-)
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Standard IP formulation

Let’s recall the formulation. It uses a binary variable xic for
every vertex i ∈ V and every color c ∈ C subject to the
following constraints:

∑
c∈C

xic = 1 ∀i ∈ V

xic + xjc ≤ 1 ∀ij ∈ E , ∀c ∈ C
xic ∈ {0,1} ∀i ∈ V ,∀c ∈ C

Note that the model can be easily adapted to the list coloring
problem by adding a “nulling” constraint (xic = 0) for every
forbidden assignment.
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The formulation and some general results
Trees, blocks and cacti graphs

Some definitions first...

Definition (Standard coloring polytope)

Given a graph G and a set of colors C, we define P(G,C) to be
the convex hull of the incident vectors of C-colorings of G.

Definition (Standard list-coloring polytope)

Given a graph G = (V ,E), a set of colors C and a set L of lists
L(i), for i ∈ V of possible assignments for the vertices of G, we
define PL(G,C,L) to be the convex hull of the incident vectors
of (C,L)-list colorings of G.
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Some general results

Theorem
Given a graph G and a set of colors C, the separation problem
over P(G,C) can be solved in polynomial time if and only if
the separation problem over PL(G,C,L) can be solved in
polynomial time for any list L.

Sketch of the proof.

As P(G,C) ⊆ [0, 1]|V |·|C|, it’s easy to show that

PL(G,C, L) = P(G,C) ∩ {x :
∑

c/∈L(i)

xic = 0}.

Then, a point x̂ /∈ PL(G,C, L) either does not belong to P(G,C) or has
x̂ic > 0 sor some c /∈ L(i). Hence, to separate a point from PL(G,C, L) we
just need to test if x̂ic = 0 sor all c /∈ L(i), or eventually separate the point (in
polynomial time) from P(G,C). The converse is trivial.
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Some general results

The following is a direct consequence of GLS theorem:

Corollary
Given a graph G and a set of colors C, the optimization
problem over P(G,C) can be solved in polynomial time if and
only if the optimization problem over PL(G,C,L) can be
solved in polynomial time for any list L.
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Some general results

Theorem
Let G be a family of graphs and C a set of colors. If the
list-coloring problem on (G,C) is an NP-C problem, then the
optimization/separation problem over the standard coloring
polytope P(G,C) cannot be solved in polynomial time, unless
P = NP.

Proof.

If the optimization problem over P(G,C) can be polynomially solved, then we
can optimize over PL(G,C, L), for any set of lists L, in polynomial time solving
the list-coloring problem on (G,C), thus contradicting the hypothesis.
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Some general results

Some remarks about the standard formulation:

This is a very simple, easy to study, formulation and it
yields polytopes with strong combinatorial properties.
Unfortunately, the above results show that this formulation
is not very powerful, as its polytopes do not admit “nice”
characterizations for hard problems.
However, we can still study this formulation for the easy
known problems...
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Some general results

Recall the known complexity boundaries

Class Coloring Pre-col µ-col (γ, µ)-col List-col
Complete bipartite P P P P NP-c
Bipartite P NP-c NP-c NP-c NP-c
Cographs P P P ? NP-c
Distance-hereditary P NP-c NP-c NP-c NP-c
Interval P NP-c NP-c NP-c NP-c
Unit interval P NP-c NP-c NP-c NP-c
Complete split P P P P NP-c
Split P P NP-c NP-c NP-c
Line of Kn,n P NP-c NP-c NP-c NP-c
Line of Kn P NP-c NP-c NP-c NP-c
Complements of bipartites P P ? ? NP-c
Trees P P P P P
Block P P P P P
Cacti P P P P P

“NP-c”: NP-complete problem “P”: polynomial problem “?”: open problem
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The formulation and some general results
Trees, blocks and cacti graphs

Standard polytope on trees

Some insights on the vertex coloring
problem and trees:

Vertex coloring problems seem to be hard
on cliques, holes and anti-holes.

Trees do not contain any of these structures.

Question: If G is a tree, do we need anything else but the standard
model to describe P(G,C)?
(i.e., is the linear relaxation of the model an integer polytope?)

Answer: Yes! :-)
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Trees, blocks and cacti graphs

Standard polytope on trees

Theorem
Given a tree T and a set of colors C, the linear relaxation
P∗(T ,C) of the standard model is an integer polytope.

Sketch of the proof.

Given a fractional point x̂ ∈ P∗(T ,C), we construct two points
x̂a, x̂b ∈ P∗(T ,C) in such a way that x̂ = 1

2 (x̂a + x̂b). Then, x̂ is not an
extreme point of P∗(T ,C) and hence every extreme point of P∗(T ,C) is
integer.
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Standard polytope on trees

The following is a direct consequence of the previous results:

Corollary
Given a tree T and a set of colors C, both the separation and
the optimization problem over PL(T ,C,L) can be solved in
polynomial time for any list L.
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Trees, blocks and cacti graphs

Standard polytope on block graphs

Definition (Clique inequalities, Coll et al., 2002)
Given a clique K ⊆ V and color c ∈ C, the clique inequality
associated to K and c is defined as∑

i∈K

xic ≤ 1. (1)

Theorem (Coll et al., 2002)

Clique inequalities (1) are valid for P(G,C) (and the inequalities
obtained by using maximal cliques are facet-defining for
P(G,C)).
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Standard polytope on block graphs

Some insights on block graphs:

Block graphs are essentially trees of cliques.

We know that P∗(G,C) is integer for trees.

We know that maximal clique inequalities
define facets of P(G,C), for any graph G.

Question: If G is a block graph, does P∗(G,C) along with clique
inequalities give a characterization of P(G,C)?
(i.e., is P∗(G,C) ∩ {x : x satisfies (1)} an integer polytope?)

Answer: Yes! :-)
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Trees, blocks and cacti graphs

Standard polytope on block graphs

Theorem
Given a block graph G and a set of colors C, the linear
relaxation of the standard model along with the clique
inequalities is an integer polytope.

Sketch of the proof.

The proof starts by proving that if G is just a clique, any fractional solution is a
convex combination of other two solutions (as in the proof for trees but here
the solutions need to fulfill some extra requirements). Then, given a fractional
solution, an induction is made on the number of cliques of the graph in order
to obtain some characteristic subsolutions. Finally, these subsolutions are
convexely combined to obtain the original fractional solution.
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Again, we have the following direct consequence of the
previous results:

Corollary
Given a block graph G and a set of colors C, both the
separation and the optimization problem over PL(G,C,L) can
be solved in polynomial time for any list L.
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The formulation and some general results
Trees, blocks and cacti graphs

Standard polytope on cactus graphs

Some insights on cactus graphs:

Cactus are essentially trees of cycles.

We know that P∗(G,C) is integer for trees.

We know some cycle-based facet defining
inequalities for P(G,C).

Question: If G is a cactus graph, does P∗(G,C) along with these
cycle-based inequalities give a characterization of P(G,C)?

Answer: we don’t know... :-(
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Some final remarks and future work

The standard formulation is a very simple, easy to study,
formulation with strong combinatorial properties.
Unfortunately, its polytopes do not admit “nice”
characterizations for hard problems.
However, some nice theorethical results can be obtained
for some of the “easy” families.
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Some final remarks and future work

Some open questions:

What about cactus graphs? Any other formulation with a
nice (polyhedral) structure for them?
(e.g., the representatives formulation)
What about the rest of the graph families? Are there
general results for other formulations?
May one formulation be “suitable” for some graph families
while other formulation being for other families?
... and for different problems?
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Thanks for your atention!

Have time for a 5-10 minutes bonus track? :-)
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Maximal Independent Sets (MIS) model
(Mehrotra & Trick, 1996)

Let’s recall briefly the MIS model

∑
S:i∈S

xS ≥ 1 ∀i ∈ V

xS ∈ {0,1} ∀S ∈ S(G)

We find some “interesting” polytopes for two families using the
MIS formulation.

Split graphs... P(G,C) is just a point or a segment!
Complete bipartite graphs... P(G,C) is just the point (1,1)!
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Ok, now I’ve really finished the
presentation...

Thank you again!
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