STIC AmSud Project
ParGO Team

Manoel Campêlo, Ricardo C. Corrêa

ParGO Research Group, Federal University of Ceará, Brazil

March 29, 2013
Research Group Members

Comput. Dept.
- Cláudia L. Sales
- Ricardo C. Corrêa
- Rudini M. Sampaio
- Victor A. Campos

Math. Dept.
- Ana Shirley F. Silva

Stat. and Appl. Math. Dept
- Carlos Diego Rodrigues
- Manoel B. Campêlo Neto

PhD Students
- Fábio C. S. Dias
- Pablo M. S. Farias
- Wladimir A. Tavares
Here we are
Vertex coloring and correlated NP-Hard problems

Graph Theory
- Ana Shirley F. Silva
- Cláudia L. Sales
- Rudini M. Sampaio
- Victor A. Campos

Combinatorial Optimization
- Carlos Diego Rodrigues
- Manoel B. Campêlo Neto
- Ricardo C. Corrêa
Graph Theoretic Approach

Stable Set Polytope of $G = (V, E)$: subset of vertices pairwise non-adjacent

vertex $u \in W$

vertex $v \notin W$
Graph Classes

NP-Hard variation of the vertex coloring problem + Graphs with special structural properties

↓

Polynomial time algorithms
A Typical Case: b-Coloring

Given a coloring \(c \), \(v \) is a b-vertex of color \(i \) if \(c(v) = i \) and \(v \) has at least one neighbor in every color class \(j, j \neq i \).

A b-coloring is a coloring such that each color class has a b-vertex.

Theorem

The Tight b-Chromatic Problem is \(NP \)-complete for connected bipartite graphs.

Theorem

The b-chromatic number of a split graph can be determined in polynomial time.
Graph Decomposition: a Powerful Tool

An example: Modular Decomposition (figure from Wikipedia)
Selected Publications and Problems

Combinatorial Optimization Approach

vertex $u \in W$
$x_W[u] = 1$

vertex $v \notin W$
$x_W[v] = 0$

Characteristic vector x_W of $W \subseteq V$
Combinatorial Optimization Approach

\[\text{vertex } u \in W \quad x_W[u] = 1 \]

\[\text{vertex } v \notin W \quad x_W[v] = 0 \]

\textit{STAB}(G): Convex hull of characteristic vectors

For every \(x \in \text{STAB}(G) \),

\[x[u] + x[v] \leq 1, \quad uv \in E \]
Maximum Stable Set (MSS) Problem

Linear program

$$\alpha(G) = \max \left\{ \sum_{u \in V} x[u] \mid x \in STAB(G) \right\}$$
Maximum Stable Set (MSS) Problem

Linear program

\[\alpha(G) = \max \{ \sum_{u \in V} x[u] \mid x \in STAB(G) \} \]

Integer program

\[\alpha(G) = \max \sum_{u \in V} x[u] \]

s.t. \[x[u] + x[v] \leq 1, \quad uv \in E \]

\[x[u] \in \{0, 1\}, \quad u \in V \]
Disjoint Stable Set Problems

Finding a family \mathcal{W} of disjoint stable sets under certain constraints

Some examples

- MSS: maximize $|\bigcup \mathcal{W}|$ under $|\mathcal{W}| = 1$
- Maximum k-partite induced subgraph: maximize $|\bigcup \mathcal{W}|$ under $|\mathcal{W}| \leq k$
- Vertex coloring: minimize $|\mathcal{W}|$ when, for all $v \in V$, there exists $S \in \mathcal{W}$ such that $v \in S$
Covering Formulation for the Vertex Coloring Problem

\[S_{max} - \text{family of maximal ss of } G \]

\[\chi(G) = \min \sum_{S \in S_{max}} x[S] \]

s.t. \[\sum_{S \in S_{max}: u \in S} x[S] \geq 1, \quad u \in V \]

\[x[S] \in \{0, 1\}, \quad S \in S_{max} \]

Exponential number of variables

[Mehrotra, Trick 1996] - column generation implementation

[Hansen, Labbé, Schindl 2009] - polyhedral study;

\[\sum_{S \in S_{max}} x[S] \geq \chi(G) \text{ if } G \text{ is critical and } \bar{G} \text{ is connected} \]
Representatives

Let us choose a representative for each nonempty stable set of G. One simple criterion is to choose the smallest vertex in the stable set according to a given order of the vertices [C, Campos, C 2008].
Representatives

Let us choose a representative for each nonempty stable set of G. One simple criterion is to choose the smallest vertex in the stable set according to a given order of the vertices [C, Campos, C 2008].
Representatives

Let us choose a representative for each nonempty stable set of G. One simple criterion is to choose the smallest vertex in the stable set according to a given order of the vertices [C, Campos, C 2008].
Let us choose a representative for each nonempty stable set of G. One simple criterion is to choose the smallest vertex in the stable set according to a given order of the vertices [C, Campos, C 2008].
Notation for the Representatives

Anti-neighborhood

$$\bar{N}^+(u) = \{v > u \mid uv \notin E\}$$

Subgraph induced by anti-neighbors

$$G^+(u) = G[\bar{N}^+[u] = \bar{N}^+(u) \cup \{u\}]$$

Stable sets represented by u

Stable sets of $G^+(u)$ containing u itself
$x^u[u] = 1$: u is a representative

$x^u[v] = 1$: u represents $v \in \bar{N}^+[u]$
Formulations by Representatives

\[\chi(G) = \min \left\{ \sum_{v \in V} x^v[v] \mid x \in \mathcal{X} \right\}, \text{ where } \mathcal{X} \text{ is given by} \]
Formulations by Representatives

$$\chi(G) = \min \left\{ \sum_{v \in V} x^v[v] \mid x \in \mathcal{X} \right\},$$ where \mathcal{X} is given by

Integer program

$$x^u[v] + x^u[w] \leq x^u[u], u \in V, v, w \in \bar{N}^+(u), vw \in E$$

$$\sum_{u \in \bar{N}^-[v]} x^u[v] \geq 1, \quad v \in V$$

$$x^u[v] \in \{0, 1\}, \quad u \in V, v \in \bar{N}^+[u]$$
Formulations by Representatives

\[\chi(G) = \min \left\{ \sum_{v \in V} x^v[v] \mid x \in \mathcal{X} \right\}, \text{ where } \mathcal{X} \text{ is given by} \]

Integer program

\[
\begin{align*}
x^u[v] + x^u[w] & \leq x^u[u], u \in V, v, w \in \bar{N}^+(u), vw \in E \\
\sum_{u \in \bar{N}^-[v]} x^u[v] & \geq 1, v \in V \\
x^u[v] & \in \{0, 1\}, \quad u \in V, v \in \bar{N}^+[u]
\end{align*}
\]

“Linear” program

\[
\begin{align*}
x^v & \in STAB_v(x^v[v](G^+(v)), \quad \sum_{u \in \bar{N}^-[v]} x^u[v] \geq 1, x^v[v] \in \{0, 1\}, v \in V
\end{align*}
\]
General Disjoint Stable Set Problem

\[
\text{max } f(V) = \sum_{v \in V} \sum_{w \in \bar{N}^+(v)} f^v[w] x^v[w] + e
\]

\[
a^v_1 x[v_1] \quad \ldots \quad a^v_n x[v_n]
\]

\[
x^V[V] \quad \ldots
\]

\[
-x^v_1 [v_1] \quad \ldots \quad -x^v_n [v_n]
\]

\[
c^v_1 x^v_1 [v_1] \quad \ldots \quad c^v_n x^v_n [v_n]
\]

\[
x^v_1 [\bar{N}^+(v_1)] \quad \ldots \quad x^v_n [\bar{N}^+(v_n)]
\]

\[
c^v_1 x^v_1 [\bar{N}^+(v_1)] \quad \ldots \quad c^v_n x^v_n [\bar{N}^+(v_n)]
\]

\[\text{subject to } \quad b x[V] \leq \ldots \leq 0 \quad \ldots \quad 0 \quad d\]
Selected Publications and Problems

Thank you