On edge b-colorings

¹ParGO - Universidade Federal do Ceará, Brazil

April 2nd, 2013

◆ロ > ◆母 > ◆臣 > ◆臣 > ─臣 ─ のへで

V. Campos, C. Lima, N. Martins, L. Sampaio, M. Santos, A. Silva On edge b-colorings

Vertex Coloring

イロト イポト イヨト イヨト

DQC

3

Vertex Coloring

- one color for each vertex
- adjacent vertices get different colors

Vertex coloring problem

<ロ> <同> <同> < 同> < 同>

nar

3

Vertex coloring problem

イロト イポト イヨト イヨト

3

Definition: vertex coloring problem

- $\chi(G) = \min$ number of colors in a vertex coloring of G
- Vertex coloring problem: find $\chi(G)$

Dificulties:

• Decision version is NP-complete

R. Karp

Reducibility among combinatorial problems. Complexity of Computations, 1972.

イロト イポト イヨト イヨト

Dificulties:

- Decision version is NP-complete
- Impossible to approximate by a factor of $n^{1-\epsilon}$ unless P=NP

C. Lund e M. Yannakakis On the hardness of approximating minimization problems. Journal of the ACM, 1994.

イロト イポト イヨト イヨト

Dificulties:

- Decision version is NP-complete
- Impossible to approximate by a factor of $n^{1-\epsilon}$ unless P=NP

イロト イポト イヨト イヨト

3

nan

One approach:

• Study polinomial coloring algorithms

Dificulties:

- Decision version is NP-complete
- Impossible to approximate by a factor of $n^{1-\epsilon}$ unless P=NP

イロト イポト イヨト イヨト

3

- Study polinomial coloring algorithms
 - Greedy algorithm

Dificulties:

- Decision version is NP-complete
- Impossible to approximate by a factor of $n^{1-\epsilon}$ unless P=NP

イロト 不同 トイヨト イヨト

3

- Study polinomial coloring algorithms
 - Greedy algorithm
 - b-coloring algorithm

Dificulties:

- Decision version is NP-complete
- Impossible to approximate by a factor of $n^{1-\epsilon}$ unless P=NP

イロト イポト イヨト イヨト

3

- Study polinomial coloring algorithms
 - Greedy algorithm
 - b-coloring algorithm
- Not guaranteed to find optimal solutions

Dificulties:

- Decision version is NP-complete
- Impossible to approximate by a factor of $n^{1-\epsilon}$ unless P=NP

イロト イポト イヨト イヨト

3

- Study polinomial coloring algorithms
 - Greedy algorithm
 - b-coloring algorithm
- Not guaranteed to find optimal solutions
- So we study the worst case of these algorithms:

Dificulties:

- Decision version is NP-complete
- Impossible to approximate by a factor of $n^{1-\epsilon}$ unless P=NP

One approach:

- Study polinomial coloring algorithms
 - Greedy algorithm
 - b-coloring algorithm
- Not guaranteed to find optimal solutions
- So we study the worst case of these algorithms:
 - The worst case of the greedy algorithm is the *Grundy number* ($\Gamma(G)$)

イロト イポト イヨト イヨト

Dificulties:

- Decision version is NP-complete
- Impossible to approximate by a factor of $n^{1-\epsilon}$ unless P=NP

One approach:

- Study polinomial coloring algorithms
 - Greedy algorithm
 - b-coloring algorithm
- Not guaranteed to find optimal solutions
- So we study the worst case of these algorithms:
 - The worst case of the greedy algorithm is the *Grundy number* (Γ(G))

イロト イポト イヨト イヨト

3

• The worst case of the b-coloring algorithm is the *b-chromatic* number (b(G))

It's hard!

• finding $\Gamma(G)$ or b(G) is NP-hard

It's hard!

- finding $\Gamma(G)$ or b(G) is NP-hard
 - even if G is bipartite

F. Havet e L. Sampaio

On the grundy number of a graph. IPEC, 2010.

J. Kratochvil, Z. Tuza e M. Voigt On the b-chromatic number of graphs. LNCS, 2002.

イロト イポト イヨト イヨト

It's hard!

- finding $\Gamma(G)$ or b(G) is NP-hard
 - even if G is bipartite

One approach

• Work with graph classes

< ロ > < 回 > < 回 > < 回 > < 回 > <

It's hard!

- finding $\Gamma(G)$ or b(G) is NP-hard
 - even if G is bipartite

One approach

- Work with graph classes
 - graph products

< ロ > < 回 > < 回 > < 回 > < 回 > <

It's hard!

- finding $\Gamma(G)$ or b(G) is NP-hard
 - even if G is bipartite

One approach

- Work with graph classes
 - graph products
 - (q, q 4) graphs

< ロ > < 回 > < 回 > < 回 > < 回 > <

It's hard!

- finding $\Gamma(G)$ or b(G) is NP-hard
 - even if G is bipartite

One approach

- Work with graph classes
 - graph products
 - (q, q 4) graphs
 - cacti

< ロ > < 回 > < 回 > < 回 > < 回 > <

It's hard!

- finding $\Gamma(G)$ or b(G) is NP-hard
 - even if G is bipartite

One approach

- Work with graph classes
 - graph products
 - (q, q 4) graphs
 - cacti
 - line graphs

イロト イポト イヨト イヨト

<ロ> <同> <同> < 同> < 同>

æ

990

Algorithm:

V. Campos, C. Lima, N. Martins, L. Sampaio, M. Santos, A. Silva On edge b-colorings

<ロ> <同> <同> < 同> < 同>

DQC

3

Algorithm:

• Give different colors to all vertices of G.

イロト イポト イヨト イヨト

nar

Э

- Give different colors to all vertices of *G*.
- Choose a color class we can recolor.

글 🕨 🛛 글

- Give different colors to all vertices of G.
- Choose a color class we can recolor.
- Secolor vertices in this color class.

ヨート

- Give different colors to all vertices of G.
- Choose a color class we can recolor.
- Recolor vertices in this color class.
- Whenever possible, go to step 2.

- Give different colors to all vertices of G.
- Choose a color class we can recolor.
- Recolor vertices in this color class.
- Whenever possible, go to step 2.

- Give different colors to all vertices of G.
- Choose a color class we can recolor.
- Recolor vertices in this color class.
- Whenever possible, go to step 2.

- Give different colors to all vertices of G.
- Choose a color class we can recolor.
- Recolor vertices in this color class.
- Whenever possible, go to step 2.

- Give different colors to all vertices of G.
- Choose a color class we can recolor.
- Secolor vertices in this color class.
- Whenever possible, go to step 2.

- Give different colors to all vertices of G.
- Choose a color class we can recolor.
- Recolor vertices in this color class.
- Whenever possible, go to step 2.

- Give different colors to all vertices of G.
- Choose a color class we can recolor.
- Recolor vertices in this color class.
- Whenever possible, go to step 2.

b-coloring

Definitions:

• b-vertex: at least one neighbor of each color other than its own.

<ロ> <同> <同> < 同> < 同>

臣

b-coloring

Definitions:

• b-vertex: at least one neighbor of each color other than its own.

イロト イポト イヨト イヨト

nar

3

• b-coloring: each color class has a b-vertex.

b-coloring

Definitions:

• b-vertex: at least one neighbor of each color other than its own.

イロト イポト イヨト イヨト

- b-coloring: each color class has a b-vertex.
- $b(G) = \max$ number of colors in a b-coloring of G.

Upper bound

<ロ> <同> <同> < 同> < 同>

2

990

Has 4 vertices of degree 3.

Upper bound

Has 4 vertices of degree 3.

Definition: *m*-degree

 $m(G) = \max\{k \mid G \text{ has } k \text{ vertices with degree } \geq k-1\}$

990

Upper bound

Has 4 vertices of degree 3.

Definition: *m*-degree

 $m(G) = \max\{k \mid G \text{ has } k \text{ vertices with degree } \geq k-1\}$

$$\chi(G) \leq b(G) \leq m(G)$$

DQC

E

 $K_{4,4}$ minus a perfect matching.

= 990

 $K_{4,4}$ minus a perfect matching.

2

5900

• Has b-coloring with 2 colors.

 $K_{4,4}$ minus a perfect matching.

<ロ> <同> <同> < 同> < 同>

Э

DQC

- Has b-coloring with 2 colors.
- Has b-coloring with 4 colors.

 $K_{4,4}$ minus a perfect matching.

イロト イポト イヨト イヨト

nar

3

- Has b-coloring with 2 colors.
- Has b-coloring with 4 colors.
- Has **no** b-coloring with 3 colors.

 $K_{4,4}$ minus a perfect matching.

< ロ > < 同 > < 臣 > < 臣 > -

3

- Has b-coloring with 2 colors.
- Has b-coloring with 4 colors.
- Has **no** b-coloring with 3 colors.

b-continuity

G is *b*-continuous if if has a b-coloring with *k* colors for every $k \in {\chi(G), ..., b(G)}$

b-chromatic number of trees

イロト イポト イヨト イヨト

3

Theorem [IM]

If T is a tree, then

•
$$b(T) \in \{m(T) - 1, m(T)\}$$

R. Irving e D. Manlove *The b-chromatic number of a graph.* Discrete Applied Mathematics 91, 1999.

b-chromatic number of trees

Theorem [IM]

If T is a tree, then

- $b(T) \in \{m(T) 1, m(T)\}$
- There exists a polynomial time algorithm to decide b(T).

イロト イポト イヨト イヨト

R. Irving e D. Manlove *The b-chromatic number of a graph.* Discrete Applied Mathematics 91, 1999.

◆ロ ▶ ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ● 臣 ● の Q ()

◆ロ > ◆母 > ◆臣 > ◆臣 > ─臣 ─ のへで

• Define χ' , b' and m' analogous to vertices but for edges.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

• Define χ' , b' and m' analogous to vertices but for edges.

EDGE B-CHROMATIC PROBLEM

- Instance: Graph G
- Question: Is b'(G) = m'(G)?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

• Define χ' , b' and m' analogous to vertices but for edges.

EDGE B-CHROMATIC PROBLEM

- Instance: Graph G
- Question: Is b'(G) = m'(G)?

Theorem [CLMSSS]

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー ショル

• Define χ' , b' and m' analogous to vertices but for edges.

EDGE B-CHROMATIC PROBLEM

- Instance: Graph G
- Question: Is b'(G) = m'(G)?

Theorem [CLMSSS]

• EDGE B-CHROMATIC PROBLEM is NP-complete.

- What happens if we consider edge b-colorings instead of vertex b-colorings?
- Define χ' , b' and m' analogous to vertices but for edges.

EDGE B-CHROMATIC PROBLEM

- Instance: Graph G
- Question: Is b'(G) = m'(G)?

Theorem [CLMSSS]

- EDGE B-CHROMATIC PROBLEM is NP-complete.
- It remains NP-complete even if G is a comparability graph or C_k-free graph, for k ≥ 4.

• What about edge b-colorings of trees?

= 990

- What about edge b-colorings of trees?
- Consider vertex b-colorings of line graphs of trees.

イロト イポト イヨト イヨト

= nar

- What about edge b-colorings of trees?
- Consider vertex b-colorings of line graphs of trees.

< < >> < <</>

- What about edge b-colorings of trees?
- Consider vertex b-colorings of line graphs of trees.

< □ > < 同 >

- What about edge b-colorings of trees?
- Consider vertex b-colorings of line graphs of trees.

< □ > < 同 >

- What about edge b-colorings of trees?
- Consider vertex b-colorings of line graphs of trees.

< 口 > < 同 >

- What about edge b-colorings of trees?
- Consider vertex b-colorings of line graphs of trees.

< A >

• Special block graphs.

- What about edge b-colorings of trees?
- Consider vertex b-colorings of line graphs of trees.

A >

- Special block graphs.
- b-coloring block graphs are hard!

- What about edge b-colorings of trees?
- Consider vertex b-colorings of line graphs of trees.

- Special block graphs.
- b-coloring block graphs are hard! (in the sense that it's unknown)

<ロ> <同> <同> < 同> < 同>

2

990

Caterpillar T

<ロ> <同> <同> < 同> < 同>

3

990

Caterpillar T

<ロ> <同> <同> < 同> < 同>

DQC

3

Caterpillar T

DQC

글 🕨 🛛 글

Caterpillar T

Deleting all leaves of T produces a path.

• Line graphs of trees are chordal.

DQC

Caterpillar T

- Line graphs of trees are chordal.
- Chordal graphs are perfect.

Caterpillar T

- Line graphs of trees are chordal.
- Chordal graphs are perfect.
- $\chi = \omega =$ size of largest clique.

Caterpillar T

- Line graphs of trees are chordal.
- Chordal graphs are perfect.
- $\chi = \omega = \text{size of largest clique. (polynomial)}$

Caterpillar T

- Line graphs of trees are chordal.
- Chordal graphs are perfect.
- $\chi = \omega =$ size of largest clique.
- From now on, let G be a line graph of a caterpillar.

• $\chi(G)$ is polynomial for G.

< ロ > < 回 > < 回 > < 回 > < 回 > <

= nar

- $\chi(G)$ is polynomial for G.
- m(G) is polynomial.

(ロ) (同) (ヨ) (ヨ) (ヨ) (0)

- $\chi(G)$ is polynomial for G.
- m(G) is polynomial.
- if $\chi(G) = m(G)$,

(ロ) (同) (ヨ) (ヨ) (ヨ) (0)

- $\chi(G)$ is polynomial for G.
- m(G) is polynomial.

• if
$$\chi(G) = m(G)$$
,

• then $\chi(G) = b(G) = m(G)$.

(ロ) (同) (ヨ) (ヨ) (ヨ) (0)

- $\chi(G)$ is polynomial for G.
- m(G) is polynomial.

Theorem [CLMSSS]

< ロ > < 回 > < 回 > < 回 > < 回 > <

= nar

- $\chi(G)$ is polynomial for G.
- m(G) is polynomial.

Theorem [CLMSSS]

• If $\chi(G) < m(G)$ and $k \in {\chi(G), ..., m(G) - 1}$,

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つく⊙

- $\chi(G)$ is polynomial for G.
- m(G) is polynomial.

Theorem [CLMSSS]

- If $\chi(G) < m(G)$ and $k \in {\chi(G), ..., m(G) 1}$,
 - there exists a b-coloring of G with k colors.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つく⊙

- $\chi(G)$ is polynomial for G.
- m(G) is polynomial.

Theorem [CLMSSS]

• If
$$\chi(G) < m(G)$$
 and $k \in \{\chi(G), ..., m(G) - 1\}$,

• there exists a b-coloring of G with k colors.

Corollary [CLMSSS]

G is b-continuous.

イロト イポト イヨト イヨト

- $\chi(G)$ is polynomial for G.
- m(G) is polynomial.

Theorem [CLMSSS]

• If
$$\chi(G) < m(G)$$
 and $k \in \{\chi(G), ..., m(G) - 1\}$,

• there exists a b-coloring of G with k colors.

Corollary [CLMSSS]

G is b-continuous.

Corollary [CLMSSS]

 $b(G) \in \{m(G) - 1, m(G)\}.$

イロト イポト イヨト イヨト

• Suppose $\chi(G) < m(G)$.

<ロ> <同> <同> < 同> < 同>

5900

- Suppose χ(G) < m(G).
- Consider a coloring of G with m(G) colors.

イロト イポト イヨト イヨト

nar

Э

- Suppose $\chi(G) < m(G)$.
- Consider a coloring of G with m(G) colors.
- These vertices have at most $\omega(G) 1$ neighbours.

イロト イポト イヨト イヨト

nar

- Suppose χ(G) < m(G).
- Consider a coloring of G with m(G) colors.
- These vertices have at most $\omega(G) 1$ neighbours.
 - so they cannot be b-vertices.

<ロ> <同> <同> < 同> < 同>

- Suppose $\chi(G) < m(G)$.
- Consider a coloring of G with m(G) colors.
- These vertices have at most $\omega(G) 1$ neighbours.
 - so they cannot be b-vertices.
- Only possible b-vertices are in the central path.

イロト イポト イヨト イヨト

CENTRAL PATH COLORING PROBLEM

- Instance: Graph G and subset $W = \{w_1, \ldots, w_k\}$ of vertices in the central path
- Question: Is there a b-coloring of G with m(G) colors such that the vertices of W are b-vertices of different colors?

イロト イポト イヨト イヨト

CENTRAL PATH COLORING PROBLEM

- Instance: Graph G and subset $W = \{w_1, \ldots, w_k\}$ of vertices in the central path
- Question: Is there a b-coloring of G with m(G) colors such that the vertices of W are b-vertices of different colors?

• We can decide if G has a b-coloring with m(G) colors by solving the CENTRAL PATH COLORING PROBLEM $\binom{n}{m(G)}$ times.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 うの()

CENTRAL PATH COLORING PROBLEM

- Instance: Graph G and subset $W = \{w_1, \ldots, w_k\}$ of vertices in the central path
- Question: Is there a b-coloring of G with m(G) colors such that the vertices of W are b-vertices of different colors?

• We can decide if G has a b-coloring with m(G) colors by solving the CENTRAL PATH COLORING PROBLEM $\binom{n}{m(G)}$ times.

nan

Theorem [CLMSSS]

We can decide if G has a b-coloring with m(G) colors by solving the CENTRAL PATH COLORING PROBLEM n times.

イロト イポト イヨト イヨト

Э

990

• Give colors to cliques.

イロト イポト イヨト イヨト

nar

- Give colors to cliques.
- Give colors to central vertices.

nar

3

イロト イポト イヨト イヨト

- Give colors to cliques.
- Give colors to central vertices.
- For every $w_i \in W$ and $j \neq i$, w_i has a neighbor colored j.

12 D

- Give colors to cliques.
- Give colors to central vertices.
- For every $w_i \in W$ and $j \neq i$, w_i has a neighbor colored j.
- Clique C gets at most |C| colors.

イロト イポト イヨト イヨト

- Give colors to cliques.
- Give colors to central vertices.
- For every $w_i \in W$ and $j \neq i$, w_i has a neighbor colored j.
- Clique C gets at most |C| colors.
- Central vertices get one color.

• Give colors to central vertices.

• For every $w_i \in W$ and $j \neq i$, w_i has a neighbor colored j.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 うの()

- Clique C gets at most |C| colors.
- Central vertices get one color.

$$x_{C,i} = \begin{cases} 1, & \text{if color } i \text{ is in } C \\ 0, & \text{othewise} \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 うの()

• Give colors to central vertices.

• For every $w_i \in W$ and $j \neq i$, w_i has a neighbor colored j.

- Clique C gets at most |C| colors.
- Central vertices get one color.

$$x_{C,i} = \begin{cases} 1, & \text{if color } i \text{ is in } C \\ 0, & \text{othewise} \end{cases}$$

• Give colors to central vertices.

$$y_{v,i} = \begin{cases} 1, & \text{if } v \text{ is colored } i \text{ (or } v = w_i) \\ 0, & \text{othewise} \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 うの()

• For every $w_i \in W$ and $j \neq i$, w_i has a neighbor colored j.

- Clique C gets at most |C| colors.
- Central vertices get one color.

$$x_{C,i} = \begin{cases} 1, & \text{if color } i \text{ is in } C \\ 0, & \text{othewise} \end{cases}$$

• Give colors to central vertices.

$$y_{\nu,i} = \begin{cases} 1, & \text{if } \nu \text{ is colored } i \text{ (or } \nu = w_i) \\ 0, & \text{othewise} \end{cases}$$

• For every $w_i \in W$ and $j \neq i$, w_i has a neighbor colored j.

$$x_{C_l(w_i),j} + x_{C_r(w_i),j} + y_{v_l(w_i),j} + y_{v_r(w_i),j} \ge 1$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 うの()

• Clique C gets at most |C| colors.

• Central vertices get one color.

$$x_{C,i} = \begin{cases} 1, & \text{if color } i \text{ is in } C \\ 0, & \text{othewise} \end{cases}$$

• Give colors to central vertices.

$$y_{\nu,i} = \begin{cases} 1, & \text{if } \nu \text{ is colored } i \text{ (or } \nu = w_i) \\ 0, & \text{othewise} \end{cases}$$

• For every $w_i \in W$ and $j \neq i$, w_i has a neighbor colored j.

$$x_{C_l(w_i),j} + x_{C_r(w_i),j} + y_{v_l(w_i),j} + y_{v_r(w_i),j} \ge 1$$

• Clique C gets at most |C| colors.

$$x_{C,1}+\cdots+x_{C,m(G)}\leq |C|$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 うの()

• Central vertices get one color.

$$x_{C,i} = \begin{cases} 1, & \text{if color } i \text{ is in } C \\ 0, & \text{othewise} \end{cases}$$

• Give colors to central vertices.

$$y_{\nu,i} = \begin{cases} 1, & \text{if } \nu \text{ is colored } i \text{ (or } \nu = w_i) \\ 0, & \text{othewise} \end{cases}$$

• For every $w_i \in W$ and $j \neq i$, w_i has a neighbor colored j.

$$x_{C_l(w_i),j} + x_{C_r(w_i),j} + y_{v_l(w_i),j} + y_{v_r(w_i),j} \ge 1$$

• Clique C gets at most |C| colors.

$$x_{C,1} + \cdots + x_{C,m(G)} \leq |C|$$

• Central vertices get one color.

$$y_{v,1}+\cdots+y_{v,m(G)}=1$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 うの()

$$x_{C,i} = \begin{cases} 1, & \text{if color } i \text{ is in } C \\ 0, & \text{othewise} \end{cases}$$

• Give colors to central vertices.

$$y_{\nu,i} = \begin{cases} 1, & \text{if } \nu \text{ is colored } i \text{ (or } \nu = w_i) \\ 0, & \text{othewise} \end{cases}$$

• For every $w_i \in W$ and $j \neq i$, w_i has a neighbor colored j.

$$x_{C_l(w_i),j} + x_{C_r(w_i),j} + y_{v_l(w_i),j} + y_{v_r(w_i),j} \ge 1$$

• Clique C gets at most |C| colors.

$$x_{C,1} + \cdots + x_{C,m(G)} \leq |C|$$

• Central vertices get one color.

$$y_{\nu,1}+\cdots+y_{\nu,m(G)}=1$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 うの()

Let this be the CENTRAL PATH POLYTOPE.

Theorem [CLMSSS]

If the CENTRAL PATH POLYTOPE has an integer solution, then the CENTRAL PATH COLORING PROBLEM is true.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つく⊙

Theorem [CLMSSS]

If the CENTRAL PATH POLYTOPE has an integer solution, then the CENTRAL PATH COLORING PROBLEM is true.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つく⊙

Theorem [CLMSSS]

The CENTRAL PATH POLYTOPE matrix is totally unimodular.

Theorem [CLMSSS]

If the CENTRAL PATH POLYTOPE has an integer solution, then the CENTRAL PATH COLORING PROBLEM is true.

Theorem [CLMSSS]

The CENTRAL PATH POLYTOPE matrix is totally unimodular.

Corollary [CLMSSS]

There is a polynomial time algorithm to decide if the CENTRAL PATH POLYTOPE has an integer solution.

イロト 不得 とくほ とくほ とうほう

Theorem [CLMSSS]

If the CENTRAL PATH POLYTOPE has an integer solution, then the CENTRAL PATH COLORING PROBLEM is true.

Theorem [CLMSSS]

The CENTRAL PATH POLYTOPE matrix is totally unimodular.

Corollary [CLMSSS]

There is a polynomial time algorithm to decide if the CENTRAL PATH POLYTOPE has an integer solution.

Corollary [CLMSSS]

There is a polynomial time algorithm to decide the CENTRAL PATH COLORING PROBLEM.

イロト イポト イヨト イヨト

Theorem [CLMSSS]

If the CENTRAL PATH POLYTOPE has an integer solution, then the CENTRAL PATH COLORING PROBLEM is true.

Theorem [CLMSSS]

The CENTRAL PATH POLYTOPE matrix is totally unimodular.

Corollary [CLMSSS]

There is a polynomial time algorithm to decide if the CENTRAL PATH POLYTOPE has an integer solution.

Corollary [CLMSSS]

There is a polynomial time algorithm to decide the CENTRAL PATH COLORING PROBLEM.

Corollary [CLMSSS]

There is a polynomial time algorithm to decide if G has a b-coloring with m(G) colors.

• Obtain a combinatorial algorithm to solve the CENTRAL PATH COLORING PROBLEM.

◆ロ ▶ ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ● ● ● ● ● ●

• Obtain a combinatorial algorithm to solve the CENTRAL PATH COLORING PROBLEM.

• Use the primal-dual method?

- Obtain a combinatorial algorithm to solve the CENTRAL PATH COLORING PROBLEM.
 - Use the primal-dual method?
- Generalize combinatorial algorithm for other classes of trees.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

- Obtain a combinatorial algorithm to solve the CENTRAL PATH COLORING PROBLEM.
 - Use the primal-dual method?
- Generalize combinatorial algorithm for other classes of trees.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

• ???

- Obtain a combinatorial algorithm to solve the CENTRAL PATH COLORING PROBLEM.
 - Use the primal-dual method?
- Generalize combinatorial algorithm for other classes of trees.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

- ???
- Profit!

Thank You!!