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Vertex Coloring

Vertex Coloring

one color for each vertex

adjacent vertices get different colors
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Vertex coloring problem

Definition: chromatic number

χ(G ) = min number of colors in a vertex coloring of G

Vertex coloring problem: find χ(G )
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Some considerations

Dificulties:

Decision version is NP-complete

Impossible to approximate by a factor of n1−ε unless P=NP

R. Karp
Reducibility among combinatorial problems.
Complexity of Computations, 1972.
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Some considerations

Dificulties:

Decision version is NP-complete

Impossible to approximate by a factor of n1−ε unless P=NP

C. Lund e M. Yannakakis
On the hardness of approximating minimization problems.
Journal of the ACM, 1994.
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Some considerations

Dificulties:

Decision version is NP-complete

Impossible to approximate by a factor of n1−ε unless P=NP

One approach:

Study polinomial coloring algorithms

Greedy algorithm
b-coloring algorithm

Not guaranteed to find optimal solutions

So we study the worst case of these algorithms:

The worst case of the greedy algorithm is the Grundy number (Γ(G))
The worst case of the b-coloring algorithm is the b-chromatic
number (b(G))
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Other considerations

It’s hard!

finding Γ(G ) or b(G ) is NP-hard

even if G is bipartite

F. Havet e L. Sampaio
On the grundy number of a graph.
IPEC, 2010.

J. Kratochvil, Z. Tuza e M. Voigt
On the b-chromatic number of graphs.
LNCS, 2002.
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Other considerations

It’s hard!

finding Γ(G ) or b(G ) is NP-hard

even if G is bipartite

One approach

Work with graph classes

graph products
(q, q − 4) graphs
cacti
line graphs
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b-coloring algorithm

Algorithm:

1 Give different colors to all vertices of G .

2 Choose a color class we can recolor.

3 Recolor vertices in this color class.

4 Whenever possible, go to step 2.
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b-coloring

Definitions:

b-vertex: at least one neighbor of each color other than its own.

b-coloring: each color class has a b-vertex.

b(G ) = max number of colors in a b-coloring of G .
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Upper bound

Has 4 vertices of degree 3.

Definition: m-degree

m(G ) = max{k | G has k vertices with degree ≥ k − 1}

χ(G ) ≤ b(G ) ≤ m(G )
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b-continuity

K4,4 minus a perfect matching.

Has b-coloring with 2 colors.

Has b-coloring with 4 colors.

Has no b-coloring with 3 colors.

b-continuity

G is b-continuous if if has a b-coloring with k colors for every
k ∈ {χ(G ), ..., b(G )}
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b-chromatic number of trees

Theorem [IM]

If T is a tree, then

b(T ) ∈ {m(T )− 1,m(T )}

There exists a polinomial time algorithm to decide b(T ).

R. Irving e D. Manlove
The b-chromatic number of a graph.
Discrete Applied Mathematics 91, 1999.
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Our results

What happens if we consider edge b-colorings instead of vertex
b-colorings?

Define χ′, b′ and m′ analogous to vertices but for edges.

Edge b-chromatic problem

Instance: Graph G

Question: Is b′(G ) = m′(G )?

Theorem [CLMSSS]

Edge b-chromatic problem is NP-complete.

It remains NP-complete even if G is a comparability graph or Ck -free
graph, for k ≥ 4.
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Other questions of interest

What about edge b-colorings of trees?

Consider vertex b-colorings of line graphs of trees.

Special block graphs.

b-coloring block graphs are hard!
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Other questions of interest

What about edge b-colorings of trees?

Consider vertex b-colorings of line graphs of trees.

Special block graphs.

b-coloring block graphs are hard! (in the sense that it’s unknown)
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Caterpillar trees

Caterpillar T

Deleting all leaves of T produces a path.

Line graphs of trees are chordal.

Chordal graphs are perfect.

χ = ω = size of largest clique.

From now on, let G be a line graph of a caterpillar.
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Caterpillar trees

Caterpillar T

Deleting all leaves of T produces a path.

Line graphs of trees are chordal.

Chordal graphs are perfect.

χ = ω = size of largest clique. (polynomial)

From now on, let G be a line graph of a caterpillar.
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Some results on line graphs of caterpillars

χ(G ) is polynomial for G .

m(G ) is polynomial.

if χ(G ) = m(G ),

then χ(G) = b(G) = m(G).

Theorem [CLMSSS]

If χ(G ) < m(G ) and k ∈ {χ(G ), . . . ,m(G )− 1},

there exists a b-coloring of G with k colors.

Corollary [CLMSSS]

G is b-continuous.

Corollary [CLMSSS]

b(G ) ∈ {m(G )− 1,m(G )}.
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Corollary [CLMSSS]

G is b-continuous.

Corollary [CLMSSS]

b(G ) ∈ {m(G )− 1,m(G )}.
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Deciding the value of b(G )

Suppose χ(G ) < m(G ).

Consider a coloring of G with m(G ) colors.

These vertices have at most ω(G )− 1 neighbours.

so they cannot be b-vertices.

Only possible b-vertices are in the central path.
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An interesting problem

Central path coloring problem

Instance: Graph G and subset W = {w1, . . . ,wk} of vertices in the
central path

Question: Is there a b-coloring of G with m(G ) colors such that the
vertices of W are b-vertices of different colors?
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Using the Central path coloring problem

Central path coloring problem

Instance: Graph G and subset W = {w1, . . . ,wk} of vertices in the
central path

Question: Is there a b-coloring of G with m(G ) colors such that the
vertices of W are b-vertices of different colors?

We can decide if G has a b-coloring with m(G ) colors by solving the
Central path coloring problem

(
n

m(G)

)
times.

Theorem [CLMSSS]

We can decide if G has a b-coloring with m(G ) colors by solving the
Central path coloring problem n times.
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Solving the Central path coloring problem

Give colors to cliques.

Give colors to central vertices.

For every wi ∈W and j 6= i , wi has a neighbor colored j .

Clique C gets at most |C | colors.

Central vertices get one color.
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Solving the Central path coloring problem

Give colors to cliques.

xC ,i =

{
1, if color i is in C
0, othewise

Give colors to central vertices.

yv ,i =

{
1, if v is colored i (or v = wi )
0, othewise

For every wi ∈W and j 6= i , wi has a neighbor colored j .

xCl (wi ),j + xCr (wi ),j + yvl (wi ),j + yvr (wi ),j ≥ 1

Clique C gets at most |C | colors.

xC ,1 + · · ·+ xC ,m(G) ≤ |C |

Central vertices get one color.

yv ,1 + · · ·+ yv ,m(G) = 1

Let this be the Central path polytope.
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Results on the Central path polytope

Theorem [CLMSSS]

If the Central path polytope has an integer solution, then the Central
path coloring problem is true.

Theorem [CLMSSS]

The Central path polytope matrix is totally unimodular.

Corollary [CLMSSS]

There is a polynomial time algorithm to decide if the Central path
polytope has an integer solution.

Corollary [CLMSSS]

There is a polynomial time algorithm to decide the Central path coloring
problem.

Corollary [CLMSSS]

There is a polynomial time algorithm to decide if G has a b-coloring with m(G)
colors.
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Open problems

Obtain a combinatorial algorithm to solve the Central path
coloring problem.

Use the primal-dual method?

Generalize combinatorial algorithm for other classes of trees.

???

Profit!
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The End

Thank You!!
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