On edge b-colorings

V. Campos ${ }^{1} \quad$ C. Lima ${ }^{1} \quad$ N. Martins ${ }^{1} \quad$ L. Sampaio ${ }^{1}$
M. Santos ${ }^{1} \quad$ A. Silva ${ }^{1}$
${ }^{1}$ ParGO - Universidade Federal do Ceará, Brazil

April 2nd, 2013

Vertex Coloring

Vertex Coloring

- one color for each vertex
- adjacent vertices get different colors

Vertex coloring problem

Definition: chromatic number

- $\chi(G)=$ min number of colors in a vertex coloring of G

Vertex coloring problem

Definition: vertex coloring problem

- $\chi(G)=$ min number of colors in a vertex coloring of G
- Vertex coloring problem: find $\chi(G)$

Some considerations

Dificulties:

- Decision version is NP-complete
R. Karp

Reducibility among combinatorial problems. Complexity of Computations, 1972.

Some considerations

Dificulties:

- Decision version is NP-complete
- Impossible to approximate by a factor of $n^{1-\epsilon}$ unless $\mathrm{P}=\mathrm{NP}$C. Lund e M. Yannakakis

On the hardness of approximating minimization problems. Journal of the ACM, 1994.

Some considerations

Dificulties:

- Decision version is NP-complete
- Impossible to approximate by a factor of $n^{1-\epsilon}$ unless $P=N P$

One approach:

- Study polinomial coloring algorithms

Some considerations

Dificulties:

- Decision version is NP-complete
- Impossible to approximate by a factor of $n^{1-\epsilon}$ unless $\mathrm{P}=\mathrm{NP}$

One approach:

- Study polinomial coloring algorithms
- Greedy algorithm

Some considerations

Dificulties:

- Decision version is NP-complete
- Impossible to approximate by a factor of $n^{1-\epsilon}$ unless $P=N P$

One approach:

- Study polinomial coloring algorithms
- Greedy algorithm
- b-coloring algorithm

Some considerations

Dificulties:

- Decision version is NP-complete
- Impossible to approximate by a factor of $n^{1-\epsilon}$ unless $P=N P$

One approach:

- Study polinomial coloring algorithms
- Greedy algorithm
- b-coloring algorithm
- Not guaranteed to find optimal solutions

Some considerations

Dificulties:

- Decision version is NP-complete
- Impossible to approximate by a factor of $n^{1-\epsilon}$ unless $P=N P$

One approach:

- Study polinomial coloring algorithms
- Greedy algorithm
- b-coloring algorithm
- Not guaranteed to find optimal solutions
- So we study the worst case of these algorithms:

Some considerations

Dificulties:

- Decision version is NP-complete
- Impossible to approximate by a factor of $n^{1-\epsilon}$ unless $P=N P$

One approach:

- Study polinomial coloring algorithms
- Greedy algorithm
- b-coloring algorithm
- Not guaranteed to find optimal solutions
- So we study the worst case of these algorithms:
- The worst case of the greedy algorithm is the Grundy number $(\Gamma(G))$

Some considerations

Dificulties:

- Decision version is NP-complete
- Impossible to approximate by a factor of $n^{1-\epsilon}$ unless $P=N P$

One approach:

- Study polinomial coloring algorithms
- Greedy algorithm
- b-coloring algorithm
- Not guaranteed to find optimal solutions
- So we study the worst case of these algorithms:
- The worst case of the greedy algorithm is the Grundy number $(\Gamma(G))$
- The worst case of the b-coloring algorithm is the b-chromatic number ($b(G)$)

Other considerations

It's hard!

- finding $\Gamma(G)$ or $b(G)$ is NP-hard

Other considerations

It's hard!

- finding $\Gamma(G)$ or $b(G)$ is NP-hard
- even if G is bipartite
F. Havet e L. Sampaio

On the grundy number of a graph.
IPEC, 2010.
國 J. Kratochvil, Z. Tuza e M. Voigt
On the b-chromatic number of graphs.
LNCS, 2002.

Other considerations

It's hard!

- finding $\Gamma(G)$ or $b(G)$ is NP-hard
- even if G is bipartite

One approach

- Work with graph classes

Other considerations

It's hard!

- finding $\Gamma(G)$ or $b(G)$ is NP-hard
- even if G is bipartite

One approach

- Work with graph classes
- graph products

Other considerations

It's hard!

- finding $\Gamma(G)$ or $b(G)$ is NP-hard
- even if G is bipartite

One approach

- Work with graph classes
- graph products
- ($q, q-4$) graphs

Other considerations

It's hard!

- finding $\Gamma(G)$ or $b(G)$ is NP-hard
- even if G is bipartite

One approach

- Work with graph classes
- graph products
- ($q, q-4$) graphs
- cacti

Other considerations

It's hard!

- finding $\Gamma(G)$ or $b(G)$ is NP-hard
- even if G is bipartite

One approach

- Work with graph classes
- graph products
- ($q, q-4$) graphs
- cacti
- line graphs

b-coloring algorithm

Algorithm:

b-coloring algorithm

Algorithm:

(1) Give different colors to all vertices of G.

b-coloring algorithm

Algorithm:

(1) Give different colors to all vertices of G.
(2) Choose a color class we can recolor.

b-coloring algorithm

Algorithm:

(1) Give different colors to all vertices of G.
(2) Choose a color class we can recolor.
(3) Recolor vertices in this color class.

b-coloring algorithm

Algorithm:

(1) Give different colors to all vertices of G.
(2) Choose a color class we can recolor.
(3) Recolor vertices in this color class.
(Whenever possible, go to step 2 .

b-coloring algorithm

Algorithm:

(1) Give different colors to all vertices of G.
(2) Choose a color class we can recolor.
(3) Recolor vertices in this color class.
((Whenever possible, go to step 2.

b-coloring algorithm

Algorithm:

(1) Give different colors to all vertices of G.
(2) Choose a color class we can recolor.
(3) Recolor vertices in this color class.
((Whenever possible, go to step 2 .

b-coloring algorithm

Algorithm:

(1) Give different colors to all vertices of G.
(2) Choose a color class we can recolor.
(3) Recolor vertices in this color class.
((Whenever possible, go to step 2.

b-coloring algorithm

Algorithm:

(1) Give different colors to all vertices of G.
(2) Choose a color class we can recolor.
(3) Recolor vertices in this color class.
((Whenever possible, go to step 2 .

b-coloring algorithm

Algorithm:

(1) Give different colors to all vertices of G.
(2) Choose a color class we can recolor.
(3) Recolor vertices in this color class.
((Whenever possible, go to step 2.

b-coloring algorithm

Algorithm:

(1) Give different colors to all vertices of G.
(2) Choose a color class we can recolor.
(3) Recolor vertices in this color class.
((Whenever possible, go to step 2 .

b-coloring

Definitions:

- b-vertex: at least one neighbor of each color other than its own.

b-coloring

Definitions:

- b-vertex: at least one neighbor of each color other than its own.
- b-coloring: each color class has a b-vertex.

b-coloring

Definitions:

- b-vertex: at least one neighbor of each color other than its own.
- b-coloring: each color class has a b-vertex.
- $b(G)=$ max number of colors in a b-coloring of G.

Upper bound

Has 4 vertices of degree 3 .

Upper bound

Has 4 vertices of degree 3 .
Definition: m-degree

$$
m(G)=\max \{k \mid G \text { has } k \text { vertices with degree } \geq k-1\}
$$

Upper bound

Has 4 vertices of degree 3 .
Definition: m-degree

$$
m(G)=\max \{k \mid G \text { has } k \text { vertices with degree } \geq k-1\}
$$

$$
\chi(G) \leq b(G) \leq m(G)
$$

b-continuity

$K_{4,4}$ minus a perfect matching.

b-continuity

$$
K_{4,4} \text { minus a perfect matching. }
$$

- Has b-coloring with 2 colors.

b-continuity

$K_{4,4}$ minus a perfect matching.

- Has b-coloring with 2 colors.
- Has b-coloring with 4 colors.

b-continuity

$K_{4,4}$ minus a perfect matching.

- Has b-coloring with 2 colors.
- Has b-coloring with 4 colors.
- Has no b-coloring with 3 colors.

b-continuity

$K_{4,4}$ minus a perfect matching.

- Has b-coloring with 2 colors.
- Has b-coloring with 4 colors.
- Has no b-coloring with 3 colors.

b-continuity

G is b-continuous if if has a b-coloring with k colors for every $k \in\{\chi(G), \ldots, b(G)\}$

b-chromatic number of trees

Theorem [IM]

If T is a tree, then

- $b(T) \in\{m(T)-1, m(T)\}$
R. Irving e D. Manlove

The b-chromatic number of a graph.
Discrete Applied Mathematics 91, 1999.

b-chromatic number of trees

Theorem [IM]

If T is a tree, then

- $b(T) \in\{m(T)-1, m(T)\}$
- There exists a polinomial time algorithm to decide $b(T)$.

國 R. Irving e D. Manlove
The b-chromatic number of a graph.
Discrete Applied Mathematics 91, 1999.

Our results

- What happens if we consider edge b-colorings instead of vertex b-colorings?

Our results

- What happens if we consider edge b-colorings instead of vertex b-colorings?
- Define $\chi^{\prime}, b^{\prime}$ and m^{\prime} analogous to vertices but for edges.

Our results

- What happens if we consider edge b-colorings instead of vertex b-colorings?
- Define $\chi^{\prime}, b^{\prime}$ and m^{\prime} analogous to vertices but for edges.

Edge b-Chromatic problem

- Instance: Graph G
- Question: Is $b^{\prime}(G)=m^{\prime}(G)$?

Our results

- What happens if we consider edge b-colorings instead of vertex b-colorings?
- Define $\chi^{\prime}, b^{\prime}$ and m^{\prime} analogous to vertices but for edges.

Edge b-Chromatic problem

- Instance: Graph G
- Question: Is $b^{\prime}(G)=m^{\prime}(G)$?

Theorem [CLMSSS]

Our results

- What happens if we consider edge b-colorings instead of vertex b-colorings?
- Define $\chi^{\prime}, b^{\prime}$ and m^{\prime} analogous to vertices but for edges.

Edge b-Chromatic problem

- Instance: Graph G
- Question: Is $b^{\prime}(G)=m^{\prime}(G)$?

Theorem [CLMSSS]

- EdGE B-CHROMATIC PROBLEM is NP-complete.

Our results

- What happens if we consider edge b-colorings instead of vertex b-colorings?
- Define $\chi^{\prime}, b^{\prime}$ and m^{\prime} analogous to vertices but for edges.

Edge b-Chromatic problem

- Instance: Graph G
- Question: Is $b^{\prime}(G)=m^{\prime}(G)$?

Theorem [CLMSSS]

- Edge b-Chromatic problem is NP-complete.
- It remains NP-complete even if G is a comparability graph or C_{k}-free graph, for $k \geq 4$.

Other questions of interest

- What about edge b-colorings of trees?

Other questions of interest

- What about edge b-colorings of trees?
- Consider vertex b-colorings of line graphs of trees.

Other questions of interest

- What about edge b-colorings of trees?
- Consider vertex b-colorings of line graphs of trees.

Other questions of interest

- What about edge b-colorings of trees?
- Consider vertex b-colorings of line graphs of trees.

Other questions of interest

- What about edge b-colorings of trees?
- Consider vertex b-colorings of line graphs of trees.

Other questions of interest

- What about edge b-colorings of trees?
- Consider vertex b-colorings of line graphs of trees.

Other questions of interest

- What about edge b -colorings of trees?
- Consider vertex b-colorings of line graphs of trees.
- Special block graphs.

Other questions of interest

- What about edge b -colorings of trees?
- Consider vertex b-colorings of line graphs of trees.
- Special block graphs.
- b-coloring block graphs are hard!

Other questions of interest

- What about edge b-colorings of trees?
- Consider vertex b-colorings of line graphs of trees.

- Special block graphs.
- b-coloring block graphs are hard! (in the sense that it's unknown)

Caterpillar trees

Caterpillar T
Deleting all leaves of T produces a path.

Caterpillar trees

Caterpillar T
Deleting all leaves of T produces a path.

Caterpillar trees

Caterpillar T
Deleting all leaves of T produces a path.

Caterpillar trees

Caterpillar T
Deleting all leaves of T produces a path.

- Line graphs of trees are chordal.

Caterpillar trees

Caterpillar T
Deleting all leaves of T produces a path.

- Line graphs of trees are chordal.
- Chordal graphs are perfect.

Caterpillar trees

Caterpillar T
Deleting all leaves of T produces a path.

- Line graphs of trees are chordal.
- Chordal graphs are perfect.
- $\chi=\omega=$ size of largest clique.

Caterpillar trees

Caterpillar T
Deleting all leaves of T produces a path.

- Line graphs of trees are chordal.
- Chordal graphs are perfect.
- $\chi=\omega=$ size of largest clique. (polynomial)

Caterpillar trees

Caterpillar T
Deleting all leaves of T produces a path.

- Line graphs of trees are chordal.
- Chordal graphs are perfect.
- $\chi=\omega=$ size of largest clique.
- From now on, let G be a line graph of a caterpillar.

Some results on line graphs of caterpillars

- $\chi(G)$ is polynomial for G.

Some results on line graphs of caterpillars

- $\chi(G)$ is polynomial for G.
- $m(G)$ is polynomial.

Some results on line graphs of caterpillars

- $\chi(G)$ is polynomial for G.
- $m(G)$ is polynomial.
- if $\chi(G)=m(G)$,

Some results on line graphs of caterpillars

- $\chi(G)$ is polynomial for G.
- $m(G)$ is polynomial.
- if $\chi(G)=m(G)$,
- then $\chi(G)=b(G)=m(G)$.

Some results on line graphs of caterpillars

- $\chi(G)$ is polynomial for G.
- $m(G)$ is polynomial.
- if $\chi(G)=m(G)$,
- then $\chi(G)=b(G)=m(G)$.

Theorem [CLMSSS]

Some results on line graphs of caterpillars

- $\chi(G)$ is polynomial for G.
- $m(G)$ is polynomial.
- if $\chi(G)=m(G)$,
- then $\chi(G)=b(G)=m(G)$.

Theorem [CLMSSS]

- If $\chi(G)<m(G)$ and $k \in\{\chi(G), \ldots, m(G)-1\}$,

Some results on line graphs of caterpillars

- $\chi(G)$ is polynomial for G.
- $m(G)$ is polynomial.
- if $\chi(G)=m(G)$,
- then $\chi(G)=b(G)=m(G)$.

Theorem [CLMSSS]

- If $\chi(G)<m(G)$ and $k \in\{\chi(G), \ldots, m(G)-1\}$,
- there exists a b-coloring of G with k colors.

Some results on line graphs of caterpillars

- $\chi(G)$ is polynomial for G.
- $m(G)$ is polynomial.
- if $\chi(G)=m(G)$,
- then $\chi(G)=b(G)=m(G)$.

Theorem [CLMSSS]

- If $\chi(G)<m(G)$ and $k \in\{\chi(G), \ldots, m(G)-1\}$,
- there exists a b-coloring of G with k colors.

Corollary [CLMSSS]

G is b-continuous.

Some results on line graphs of caterpillars

- $\chi(G)$ is polynomial for G.
- $m(G)$ is polynomial.
- if $\chi(G)=m(G)$,
- then $\chi(G)=b(G)=m(G)$.

Theorem [CLMSSS]

- If $\chi(G)<m(G)$ and $k \in\{\chi(G), \ldots, m(G)-1\}$,
- there exists a b-coloring of G with k colors.

Corollary [CLMSSS]

G is b-continuous.
Corollary [CLMSSS]
$b(G) \in\{m(G)-1, m(G)\}$.

Deciding the value of $b(G)$

- Suppose $\chi(G)<m(G)$.

Deciding the value of $b(G)$

- Suppose $\chi(G)<m(G)$.
- Consider a coloring of G with $m(G)$ colors.

Deciding the value of $b(G)$

- Suppose $\chi(G)<m(G)$.
- Consider a coloring of G with $m(G)$ colors.
- These vertices have at most $\omega(G)-1$ neighbours.

Deciding the value of $b(G)$

- Suppose $\chi(G)<m(G)$.
- Consider a coloring of G with $m(G)$ colors.
- These vertices have at most $\omega(G)-1$ neighbours.
- so they cannot be b-vertices.

Deciding the value of $b(G)$

- Suppose $\chi(G)<m(G)$.
- Consider a coloring of G with $m(G)$ colors.
- These vertices have at most $\omega(G)-1$ neighbours.
- so they cannot be b-vertices.
- Only possible b-vertices are in the central path.

An interesting problem

Central path coloring problem

- Instance: Graph G and subset $W=\left\{w_{1}, \ldots, w_{k}\right\}$ of vertices in the central path
- Question: Is there a b-coloring of G with $m(G)$ colors such that the vertices of W are b-vertices of different colors?

Using the Central path coloring problem

Central Path coloring problem

- Instance: Graph G and subset $W=\left\{w_{1}, \ldots, w_{k}\right\}$ of vertices in the central path
- Question: Is there a b-coloring of G with $m(G)$ colors such that the vertices of W are b-vertices of different colors?
- We can decide if G has a b-coloring with $m(G)$ colors by solving the Central path coloring problem $\binom{n}{m(G)}$ times.

Using the Central path coloring problem

Central path coloring problem

- Instance: Graph G and subset $W=\left\{w_{1}, \ldots, w_{k}\right\}$ of vertices in the central path
- Question: Is there a b-coloring of G with $m(G)$ colors such that the vertices of W are b-vertices of different colors?
- We can decide if G has a b-coloring with $m(G)$ colors by solving the Central path coloring problem $\binom{n}{m(G)}$ times.

Theorem [CLMSSS]

We can decide if G has a b-coloring with $m(G)$ colors by solving the Central path coloring problem n times.

Solving the Central path coloring problem

- Give colors to cliques.

Solving the Central path coloring problem

- Give colors to cliques.
- Give colors to central vertices.

Solving the Central path coloring problem

- Give colors to cliques.
- Give colors to central vertices.
- For every $w_{i} \in W$ and $j \neq i, w_{i}$ has a neighbor colored j.

Solving the Central path coloring problem

- Give colors to cliques.
- Give colors to central vertices.
- For every $w_{i} \in W$ and $j \neq i, w_{i}$ has a neighbor colored j.
- Clique C gets at most $|C|$ colors.

Solving the Central path coloring problem

- Give colors to cliques.
- Give colors to central vertices.
- For every $w_{i} \in W$ and $j \neq i, w_{i}$ has a neighbor colored j.
- Clique C gets at most $|C|$ colors.
- Central vertices get one color.

Solving the Central path coloring problem

- Give colors to cliques.
- Give colors to central vertices.
- For every $w_{i} \in W$ and $j \neq i, w_{i}$ has a neighbor colored j.
- Clique C gets at most $|C|$ colors.
- Central vertices get one color.

Solving the Central path coloring problem

- Give colors to cliques.

$$
x_{C, i}= \begin{cases}1, & \text { if color } i \text { is in } C \\ 0, & \text { othewise }\end{cases}
$$

- Give colors to central vertices.
- For every $w_{i} \in W$ and $j \neq i, w_{i}$ has a neighbor colored j.
- Clique C gets at most $|C|$ colors.
- Central vertices get one color.

Solving the Central path coloring problem

- Give colors to cliques.

$$
x_{C, i}= \begin{cases}1, & \text { if color } i \text { is in } C \\ 0, & \text { othewise }\end{cases}
$$

- Give colors to central vertices.

$$
y_{v, i}= \begin{cases}1, & \text { if } v \text { is colored } i\left(\text { or } v=w_{i}\right) \\ 0, & \text { othewise }\end{cases}
$$

- For every $w_{i} \in W$ and $j \neq i, w_{i}$ has a neighbor colored j.
- Clique C gets at most $|C|$ colors.
- Central vertices get one color.

Solving the Central path coloring problem

- Give colors to cliques.

$$
x_{C, i}= \begin{cases}1, & \text { if color } i \text { is in } C \\ 0, & \text { othewise }\end{cases}
$$

- Give colors to central vertices.

$$
y_{v, i}= \begin{cases}1, & \text { if } v \text { is colored } i\left(\text { or } v=w_{i}\right) \\ 0, & \text { othewise }\end{cases}
$$

- For every $w_{i} \in W$ and $j \neq i, w_{i}$ has a neighbor colored j.

$$
x_{C_{l}\left(w_{i}\right), j}+x_{C_{r}\left(w_{i}\right), j}+y_{v_{l}\left(w_{i}\right), j}+y_{v_{r}\left(w_{i}\right), j} \geq 1
$$

- Clique C gets at most $|C|$ colors.
- Central vertices get one color.

Solving the Central path coloring problem

- Give colors to cliques.

$$
x_{C, i}= \begin{cases}1, & \text { if color } i \text { is in } C \\ 0, & \text { othewise }\end{cases}
$$

- Give colors to central vertices.

$$
y_{v, i}= \begin{cases}1, & \text { if } v \text { is colored } i\left(\text { or } v=w_{i}\right) \\ 0, & \text { othewise }\end{cases}
$$

- For every $w_{i} \in W$ and $j \neq i, w_{i}$ has a neighbor colored j.

$$
x_{C_{l}\left(w_{i}\right), j}+x_{C_{r}\left(w_{i}\right), j}+y_{v_{l}\left(w_{i}\right), j}+y_{v_{r}\left(w_{i}\right), j} \geq 1
$$

- Clique C gets at most $|C|$ colors.

$$
x_{C, 1}+\cdots+x_{C, m(G)} \leq|C|
$$

- Central vertices get one color.

Solving the Central path coloring problem

- Give colors to cliques.

$$
x_{C, i}= \begin{cases}1, & \text { if color } i \text { is in } C \\ 0, & \text { othewise }\end{cases}
$$

- Give colors to central vertices.

$$
y_{v, i}= \begin{cases}1, & \text { if } v \text { is colored } i\left(\text { or } v=w_{i}\right) \\ 0, & \text { othewise }\end{cases}
$$

- For every $w_{i} \in W$ and $j \neq i, w_{i}$ has a neighbor colored j.

$$
x_{C_{l}\left(w_{i}\right), j}+x_{C_{r}\left(w_{i}\right), j}+y_{v_{l}\left(w_{i}\right), j}+y_{v_{r}\left(w_{i}\right), j} \geq 1
$$

- Clique C gets at most $|C|$ colors.

$$
x_{C, 1}+\cdots+x_{C, m(G)} \leq|C|
$$

- Central vertices get one color.

$$
y_{v, 1}+\cdots+y_{v, m(G)}=1
$$

Solving the Central path coloring problem

- Give colors to cliques.

$$
x_{C, i}= \begin{cases}1, & \text { if color } i \text { is in } C \\ 0, & \text { othewise }\end{cases}
$$

- Give colors to central vertices.

$$
y_{v, i}= \begin{cases}1, & \text { if } v \text { is colored } i\left(\text { or } v=w_{i}\right) \\ 0, & \text { othewise }\end{cases}
$$

- For every $w_{i} \in W$ and $j \neq i, w_{i}$ has a neighbor colored j.

$$
x_{C_{l}\left(w_{i}\right), j}+x_{C_{r}\left(w_{i}\right), j}+y_{v_{l}\left(w_{i}\right), j}+y_{v_{r}\left(w_{i}\right), j} \geq 1
$$

- Clique C gets at most $|C|$ colors.

$$
x_{C, 1}+\cdots+x_{C, m(G)} \leq|C|
$$

- Central vertices get one color.

$$
y_{v, 1}+\cdots+y_{v, m(G)}=1
$$

Let this be the Central path polytope.

Results on the Central path polytope

Theorem [CLMSSS]

If the Central path polytope has an integer solution, then the Central PATH COLORING PROBLEM is true.

Results on the Central path polytope

Theorem [CLMSSS]

If the Central path polytope has an integer solution, then the Central PATH COLORING PROBLEM is true.

Theorem [CLMSSS]

The Central path polytope matrix is totally unimodular.

Results on the Central path polytope

Theorem [CLMSSS]

If the Central path polytope has an integer solution, then the Central PATH COLORING PROBLEM is true.

Theorem [CLMSSS]

The Central path polytope matrix is totally unimodular.

Corollary [CLMSSS]

There is a polynomial time algorithm to decide if the CENTRAL PATH POLYTOPE has an integer solution.

Results on the Central path polytope

Theorem [CLMSSS]

If the Central path polytope has an integer solution, then the Central PATH COLORING PROBLEM is true.

Theorem [CLMSSS]

The Central path polytope matrix is totally unimodular.

Corollary [CLMSSS]

There is a polynomial time algorithm to decide if the CENTRAL PATH POLYTOPE has an integer solution.

Corollary [CLMSSS]

There is a polynomial time algorithm to decide the Central path coloring PROBLEM.

Results on the Central path polytope

Theorem [CLMSSS]

If the Central path polytope has an integer solution, then the Central PATH COLORING PROBLEM is true.

Theorem [CLMSSS]

The Central path polytope matrix is totally unimodular.

Corollary [CLMSSS]

There is a polynomial time algorithm to decide if the Central path pOLYTOPE has an integer solution.

Corollary [CLMSSS]

There is a polynomial time algorithm to decide the Central path coloring PROBLEM.

Corollary [CLMSSS]

There is a polynomial time algorithm to decide if G has a b-coloring with $m(G)$ colors.

Open problems

- Obtain a combinatorial algorithm to solve the Central path COLORING PROBLEM.

Open problems

- Obtain a combinatorial algorithm to solve the Central path COLORING PROBLEM.
- Use the primal-dual method?

Open problems

- Obtain a combinatorial algorithm to solve the Central path COLORING PROBLEM.
- Use the primal-dual method?
- Generalize combinatorial algorithm for other classes of trees.

Open problems

- Obtain a combinatorial algorithm to solve the Central path COLORING PROBLEM.
- Use the primal-dual method?
- Generalize combinatorial algorithm for other classes of trees.
- ???

Open problems

- Obtain a combinatorial algorithm to solve the Central path COLORING PROBLEM.
- Use the primal-dual method?
- Generalize combinatorial algorithm for other classes of trees.
- ???
- Profit!

The End

Thank You!!

