

1

Graph algorithms based on fly-automata:

logical descriptions and usable constructions

Bruno Courcelle

(joint work with Irène Durand)

Bordeaux University, LaBRI (CNRS laboratory)

2

Topics

 Fixed-parameter tractable (FPT) algorithms based on

 graph decompositions + logic + infinite automata

 on terms called fly-automata.

3

Graph decompositions = tree structuring of graph in terms

 of “small” graphs and composition operations

 Graph structure theory :

 tree-decomposition for the Graph Minor Theorem,

 modular decomposition for comparability graphs,

 ad hoc decompositions for the Perfect Graph Theorem.

 Algorithmic meta-theorems give FPT algorithms for

 parameters tree-width and clique-width based on graph

 decompositions; properties to check are expressed in

 monadic second-order logic (MSO). (Definitions will be given soon).

4

Theorem : For each k, every MSO graph property P can be

checked in (FPT) time O(f(k).n) where n = number of vertices, k =

tree-width or clique-width of the input graph, given by a relevant

decomposition. This decomposition is formalized by an algebraic term

over operations that build graphs (generalizing concatenation of words).

Method : From k and ϕ expressing P, one builds a finite

automaton A(ϕ,k) to recognize the terms that represent decom-

positions of width at most k and define graphs satisfying P.

5

Difficulty : The finite automaton A(ϕ,k) is much too large as soon

as k > 2 : 2^(2^(…2^k)..)) states

(because of quantifier alternations)

To overcome this difficulty, we use fly-automata whose states and

transitions are described and not tabulated. Only the transitions

necessary for an input term are computed “on the fly”. Sets of states

can be infinite and fly-automata can compute values, e.g., the number of

p-colorings or of acyclic p-colorings of a graph. This is a theoretical view

of dynamic programming.

6

The MSO meta-theorem through fly-automata

 ϕ (MSO formula)

 Fly-automaton constructor

 Yes

G Graph analyzer t A(ϕ)

 No

 A(ϕ): infinite fly-automaton. The time taken by A(ϕ) is O(f(k).n) where

k depends on the operations occurring in t and bounds the tree-width or

clique-width of G.

7

Computations using fly-automata (by Irène Durand)

 Number of 3-colorings of the 6 x 525 rectangular grid (of clique-
width 8) in 10 minutes.

 4-acyclic-colorability of the Petersen graph (clique-width 5) in 1.5
minutes.

 (3-colorable but not acyclically;

 red and green vertices

 induce a cycle).

8

The McGee graph

is defined by a term

of size 99 and depth 76.

This graph is 3-acyclically colorable.

Checked in 40 minutes.

Even in 2 seconds by enumerating the accepting

runs, and stopping as soon as a success is found.

9

Definition 1 : Monadic Second-Order Logic

 First-order logic extended with (quantified) variables
denoting subsets of the domains.

 A graph G is given by the logical structure

 (VG , edgG(.,.)) = (vertices, adjacency relation)

 Property P is MSO expressible : P(G) ⇔ G != ϕ

 MSO expressible properties : transitive closure, properties of

paths, connectedness, planarity (via Kuratowski), p-colorability.

10

 Examples : G is 3-colorable :

∃X ,Y (X ∩ Y = ∅ ∧
 ∀u,v { edg(u,v) ⇒
 [(u ∈ X ⇒ v ∉ X) ∧ (u ∈ Y ⇒ v ∉ Y) ∧

 (u ∉ X ∪ Y ⇒ v ∈ X ∪ Y)]

 })

G is not connected :

∃Z (∃x ∈ Z ∧ ∃y ∉ Z ∧ (∀u,v (u ∈ Z ∧ edg(u,v) ⇒ v ∈ Z))

Planarity is MSO-expressible (no minor K5 or K3,3).

11

 Edge quantifications (MSO2 graph properties)

 If G = (VG , edgG(.,.)), its incidence graph is defined as
 Inc(G) := (VG ∪ EG , incG(.,.)) with

 incG(u,e) ⇔ u is the tail of edge e,

 incG(e,u) ⇔ u is the head of edge e. (G is directed).

 MSO formulas over Inc(G) can use quantifications on edges and

express more properties than those over G. MSO2 graph properties of G

are expressed by MSO formulas over Inc(G).

 That G is isomorphic to some Kp,p is MSO2 expressible but not MSO

expressible.

12

Definition 2 : Tree-decomposition, tree-width (denoted by twd(G)).

 Graph G a decomposition of G of width 3 (= 4-1)

13

Definition 3 : Clique-width (denoted by cwd(G)).

 Defined from graph operations. Graphs are simple, directed or not,

vertices are labelled by a,b,c, A vertex labelled by a is an a-vertex.

One binary operation: disjoint union : ⊕

Unary operations: edge addition denoted by Adda,b

Adda,b (G) is G augmented

with undirected edges between every

a-vertex and every b-vertex.

The number of added edges depends

on the argument graph. H = Adda,b (G) ; only 5 new edges added

Directed edges are defined similarly.

14

Vertex relabellings :

Relaba b(G) is G with every a-vertex is made into a b-vertex

Basic graphs : a , a vertex labelled by a.

The clique-width of G (denoted by cwd(G)) is the smallest k such that

G is defined by a term using k labels.

Example : Cliques have unbounded tree-width and

clique-width 2.

Kn is defined by tn where tn+1 =

Relabb a(Adda,b (tn ⊕ b))

15

Meta-theorems : FPT time f(wd(G)).n

 (1) MSO properties of graphs of bounded cwd,

 (2) MSO2 properties of graphs of bounded twd.

 Notes: - MSO expressible ⇒ MSO2 expressible and

 bounded twd ⇒ bounded cwd.

(2) reduces to (1) because MSO2 on G = MSO on Inc(G)

 and cwd(Inc(G)) = O(twd(Inc(G))) = O(twd(G))

 avoiding the exponential jump cwd(G) = 2O(twd(G))

 Next : only MSO formulas and clique-width

16

Definition 4 : Fly-automaton (FA)

A = < F, Q, δ, Out >

F : finite or countable (effective) set of operations,

Q : finite or countable (effective) set of states (integers, pairs of integers,

finite sets of integers: states can be encoded as finite words, integers in binary),

Out : Q � D (a set of finite words), computable.

δ : computable (bottom-up) transition function

Nondeterministic case : δ is finitely multi-valued, which implies that

determinization works.

An FA defines a computable function : T(F) � D , a decidable

property if D = {True, False}.

17

Theorem [B.C & I.D.] : For each MSO property P, one can

construct a single infinite FA over F that recognizes the terms t in

T(F) such that P(G(t)) holds.

Computation time is f(k).n, n = size of term, k = number of labels in t.

Note : Graphs are handled through terms or labelled trees

 (cf. tree-decompositions) describing them.

Consequence : The same automaton (the same model-checking program)

can be used for graphs of any clique-width.

18

Proof sketches : To check a property P(G), for G = G(t), t ∈ T(F).

 For each labelled graph G, we define a piece of information q(G)

that encodes properties of G and values attached to G, so that:

 (i) inductive behaviour of q : for f ∈ F and graphs G,H:

 q(f(G,H)) = fq (q(G), q(H))

 for some computable function fq .

 (ii) P(G) can be decided from q(G).

19

 Then q(G(t/u)) is computed bottom-up in a term t, for each

node u. This information is relative to the graph G(t/u) (a subgraph

of G) defined by the subterm t/u of t issued from u.

 q(G(t/u)) is a state of a finite or infinite deterministic

 bottom-up automaton.

These automata formalize some form of dynamic programming.

Constructions: “Direct” for a well-understood graph property or

“automatic” from an MSO formula.

20

 Computation time of a fly-automaton

 F : all graph operations, Fk : those using labels 1, …, k.

 On term t ∈ T(Fk) defining G(t) with n vertices, if a fly-automaton

 takes time bounded by :

 (k + n)c � it is a P-FA (a polynomial-time FA),

 f(k).nc � it is an FPT-FA,

 a.ng(k) � it is an XP-FA (XP : see Downey and Fellows).

 The associated algorithm is, respectively, polynomial-time, FPT or

XP for clique-width as parameter.

21

Direct construction 1 : Connectedness.

The state at node u is the set of types (sets of labels) of the

connected components of the graph G(t/u). For k labels (k = bound

on clique-width), the set of states has size < 2 ^ (2 ^ k).

 Proved lower bound : 2 ^ (2 ^ k/2).

� Impossible to “compile” the automaton (i.e., to list the transitions) .

Example of a state : q = { {a}, {a,b}, {b,c,d}, {b,d,f } }, (a,b,c,d,f : labels).

Some transitions :

 Adda,c : q { {a,b,c,d}, {b,d,f } },

 Relaba b: q { {b}, {b,c,d}, {b,d,f } }

 Transitions for ⊕ : union of sets of types.

Note : Also state (p,p) if G(t/u) has > 2 connected components, all of type p.

22

In a fly-automaton, states and transitions are computed and not

tabulated. We can allow fly-automata with infinitely many states and

with outputs : numbers, finite sets of tuples of numbers, etc.

 Example continued : For computing the number of connected

components, we use states such as :

 q = { ({a}, 4), ({a,b}, 2), ({b,c,d},2), ({b,d,f },3) },

 where 4, 2, 2, 3 are the numbers of connected components

 of respective types {a}, {a,b}, {b,c,d}, {b,d,f }.

23

Direct construction 2 : Regularity (not MSO)

A state is a tuple of counters that indicates, for each label a:

 the number of a-vertices and

 the common degree of all a-vertices.

The state is Error if two a-vertices have different degrees: the edge

addition operations will add the same numbers of edges (some technical

details are omitted) to these vertices, hence the considered graph cannot

be regular.

24

Inductive construction based on an MSO formula

 Atomic formulas : direct constructions (examples to come)

 ¬ P (negation) : FA are run deterministically, it suffices to exchange

accepting/non-accepting states.

 P ∧ Q, P ∨ Q : products of automata.

 How to handle free variables and ∃ X,Y.P(X,Y) ?

25

Terms are equipped with Booleans that encode assignments of

vertex sets V1,…,Vn to the free set variables X1,…,Xn of MSO

formulas (formulas are written without first-order variables):

 1) we replace in F each a by the nullary symbol

 (a, (w1,…,wn)), wi ∈ {0,1} : we get F(n) (only nullary symbols are modified);

 2) a term s in T(F(n)) encodes a term t in T(F) and an

 assignment of sets V1,…,Vn to the set variables X1,…,Xn :

 if u is an occurrence of (a, (w1,..,wn)), then

 wi = 1 if and only if u ∈ Vi .

 3) s is denoted by t * (V1,…,Vn)

26

Example

 Graph G(t)

 Term t

27

Example (continued)

 V1 = {1,3,4}, V2 = {2,3}

 Term t * (V1,V2)

28

 By an induction on ϕ, we construct for each ϕ(X1,…,Xn) an FA

A(ϕ(X1,…,Xn)) that recognizes:

L(ϕ(X1,…,Xn)) : = { t * (V1,…,Vn) ∈ T(F(n)) / (G(t), V1,…,Vn)  = ϕ }

Quantifications: Formulas are written without ∀

 L(∃ Xn+1 . ϕ(X1, ..., Xn+1)) = pr(L (ϕ(X1, ..., Xn+1))

 A(∃ Xn+1 . ϕ(X1, ..., Xn+1)) = pr(A (ϕ(X1, ..., Xn+1))

where pr is the projection that eliminates the last Boolean;

� a non-deterministic automaton.

29

Atomic and basic formulas :

X1 ⊆ X2 , X1 = ∅ , Single(X1),

Card p,q (X1) : cardinality of X1 is = p mod. q,

Card < q (X1) : cardinality of X1 is < q.

� Easy constructions of automata with few states :

 respectively 2, 2, 3, q, q+1 states.

Example : for X1 ⊆ X2 , the term must have no constant (a, 10).

30

Atomic formula : edg(X1,X2) (means : X1 = { x } ∧ X2 = { y } ∧ edg(x, y))

 Vertex labels belong to a countable set C of labels.

 States : 0, Ok, a(1), a(2), ab, Error, for a,b ∈ C , a ≠ b

Meaning of states (at node u of t ; its subterm t/u defines G(t/u) ⊆ G(t)).

 0 : X1 = ∅ , X2 = ∅

 Ok Accepting state : X1 = {v} , X2 = {w} , edg(v,w) in G(t/u)

 a(1) : X1 = {v} , X2 = ∅ , v has label a in G(t/u)

 a(2) : X1 = ∅ , X2 = {w} , w has label a in G(t/u)

 ab : X1 = {v} , X2 = {w} , v has label a, w has label b (hence v ≠ w)

 and ¬edg(v,w) in G(t/u)

 Error : all other cases

31

 Transition rules

 For the constants based on a :

 (a,00) � 0 ; (a,10) � a(1) ; (a,01) � a(2) ; (a,11) � Error

 For the binary operation ⊕: ⊕ r

 (p,q,r are states) p q

 If p = 0 then r := q

 If q = 0 then r := p

 If p = a(1), q = b(2) and a ≠ b then r := ab

 If p = b(2), q = a(1) and a ≠ b then r := ab

 Otherwise r : = Error

32

 For unary operations Adda,b Adda,b r

 p

 If p = ab then r := Ok else r : = p

 For unary operations Relaba b

 If p = a(i) where i = 1 or 2 then r : = b(i)

 If p = ac where c ≠ a and c ≠ b then r : = bc

 If p = ca where c ≠ a and c ≠ b then r : = cb

 If p = Error, 0, Ok, c(i), cd, dc where c ≠ a then r : = p

33

Theorem : For each sentence ϕ, the infinite fly-automaton A(ϕ)

accepts in time f(ϕ, k).  t  the terms t in T(F) such that G(t) = ϕ

where k is the number of labels occurring in t.

 It gives a fixed-parameter linear model-checking algorithm for

input t, and a fixed-parameter cubic one if the graph has to be

parsed.

 The parsing problem is another difficulty. See conclusion.

34

Other constructions (for computing values)

The number of satisfying assignments : # X.P(X).

The spectrum SpX.P(X) : the set of tuples of cardinalities of the

components of the tuples X that satisfy P(X).

The multispectrum MSpX.P(X) is the corresponding multiset of

tuples of SpX.P(X). For X = X (one component):

 the set of pairs (m ,i) such that i > 0 is

 the number of sets X of cardinality m that satisfy P(X).

For a p-tuple X, a multispectrum is a function [0,n]p � [0,2 p.n];

it can be encoded in size O(n p.log(2 p.n)) = O(n p+1).

The minimum cardinality of X satisfying P(X).

35

Example: Number of accepting runs of a nondeterministic automat.

Let A = < F, Q, δ, Acc > be finite, nondeterministic.

Then #A := < F, [Q � N], δ#, Out >

 [Q � N] = the set of total functions : Q � N

 δ# is easy to define such that the state reached at position

 u in the input term is the function σ such that σ(q) is

 the number of runs reaching q at u.

 Out(σ) is the sum of σ(q) for q in Acc.

#A is a fly-automaton obtained by a generic construction that

extends to the case of an infinite fly-automaton A.

36

Some non-MSO examples

(1) Equitable p-coloring :

 ∃X1,…,Xp (Partition(X1,…,Xp) ∧ Stable[X1] ∧...∧ Stable[Xp]

 ∧ X1=…=Xi-1> Xi =…=Xp> X1-1).

 It is FPT (for fixed p).

 (2) Partition into 2 regular graphs :

 ∃X (Reg[X] ∧ Reg[Xc])

 Reg[X] means that the subgraph induced on X is regular;

 Xc is the complement of X. It is XP.

37

(3) Minimizing the use of a particular color: this gives a “distance

to p-colorability” for a graph that p+1-colorable but not

 p-colorable.

In general, we can handle properties and functions of the forms

 ∃X.P(X), MSp X.P(X), Sp X.P(X), # X.P(X)

where P(X) is a Boolean combination of properties for which

we have constructed FA (Reg, NoCycle, Stable, etc…).

38

The system AUTOGRAPH (by I. Durand)

 Fly-automata for basic graph properties :

 Clique, Stable (no edge), Link(X,Y), NoCycle,

 Connectedness, Regularity, Partition(X, Y, Z), etc…

 and functions :

 #Link(X,Y) (number of edges between X and Y),

 Maximum degree.

39

 Procedures for combining fly-automata (combinations of descriptions)

 product : for P ∧ Q, P ∨ Q, g(α1 , …, αp)

 A � A/X : for P → P[X], (P in induced subgraph on X) and

 A � A/(X ∩ Y) ∪ (Y ∩ Z)
c
 for relativization to set terms.

 image automaton: A � h(A) : in the transitions of A, each

 function symbol f is replaced by h(f) ; h(A) is nondeterministic:

 for P(X) � ∃X.P(X)

40

Procedures to build automata that compute functions:

 #X.P(X) : the number of tuples X that satisfy P(X) in

 the input term (hence, in the associated graph).

 SpX.P(X) : the set of tuples of cardinalities of the

 components of the X that satisfy P(X).

 MSpX.P(X) : the corresponding multiset.

 SetValX.α(X) / P(X) : the set of values of α(X)

 for the tuples X that satisfy P(X).

 For each case, a procedure transforms FA for P(X) and α(X)

 into FA that compute the associated functions. (These transformations

 do not depend on P(X) and α(X).)

41

Conclusion and future work

 The parsing problem : graphs arising from concrete problems are

not random. They usually have “natural” hierarchical decompositions

from which terms of small tree-width or clique-width are not hard to

construct. This situation arises in compilation (flow-graphs of structured

programs), in linguistics and in chemistry.

 It is thus interesting to develop specific parsing algorithms for

graph classes relevant to particular applications.

42

 With fly-automata, we get in most cases XP or FPT dynamic

programming algorithms, that can be obtained independently.

 Fly-automata, can be quickly constructed from logical descriptions

� flexibility.

 These constructions are implemented. Tests have been made

mainly for colorability and connectedness problems.

 Next step : enumeration algorithms based on

fly-automata.

 Thank you for suggesting interesting problems that could fit

in this framework.

43

 Work presented at workshop GROW in Santorini, Greece.

