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Topics 

 

  Fixed-parameter tractable (FPT) algorithms based on 

 graph  decompositions  +  logic  +  infinite  automata   

 on terms  called  fly-automata. 
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Graph decompositions = tree structuring of graph in terms  

    of “small” graphs and composition operations  
 

 Graph structure theory : 

  tree-decomposition  for  the Graph Minor Theorem, 

  modular decomposition  for comparability graphs, 

  ad hoc decompositions  for the Perfect  Graph Theorem. 
 

 Algorithmic  meta-theorems  give  FPT algorithms  for 

  parameters  tree-width  and clique-width  based on graph  

  decompositions; properties to check are expressed in  

        monadic second-order logic (MSO). (Definitions  will  be given  soon). 
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Theorem : For each k, every MSO  graph property  P  can be 

checked in (FPT) time  O(f(k).n) where n = number of vertices, k = 

tree-width or clique-width of the input graph, given by a relevant 

decomposition. This decomposition is formalized by an algebraic term 

over operations that build graphs (generalizing concatenation of words). 
 

Method : From k and ϕ expressing P, one builds a  finite  

automaton  A(ϕ,k) to recognize the terms that represent decom-

positions of  width at  most  k and define graphs satisfying  P.  
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Difficulty : The finite automaton  A(ϕ,k) is much too large as soon 

as   k > 2 :  2^(2^(…2^k)..))  states  

(because of quantifier alternations) 
 

   

To overcome this difficulty, we use fly-automata whose states and 

transitions are described and not tabulated. Only the transitions 

necessary  for an  input term are computed “on the fly”.  Sets of states 

can be infinite and fly-automata can compute values, e.g., the number of 

p-colorings or of acyclic p-colorings of a graph. This is a theoretical view 

of dynamic  programming. 
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The  MSO  meta-theorem  through fly-automata 
  

                ϕ    (MSO  formula)

                             

      

             Fly-automaton constructor  

                  Yes  

G                   Graph analyzer                 t                 A(ϕ)           

                  No   

 A(ϕ): infinite fly-automaton. The time taken by  A(ϕ) is O(f(k).n) where 

k depends on the operations occurring in t and bounds the tree-width or 

clique-width of  G.  
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Computations  using  fly-automata    (by Irène  Durand) 
 

 Number of   3-colorings  of  the  6 x 525  rectangular grid  (of clique-
width  8)  in  10 minutes.  
 
 
 
 4-acyclic-colorability  of  the  Petersen  graph  (clique-width 5)  in  1.5   
minutes. 
 
 (3-colorable but not acyclically;  

 red  and  green  vertices  

 induce  a  cycle). 
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The  McGee  graph    

is  defined  by a term  

of size  99  and depth 76. 

 

This graph  is 3-acyclically  colorable. 

Checked in 40 minutes. 

Even in  2 seconds by enumerating the accepting  

runs,  and  stopping  as soon as  a  success is found. 
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Definition  1 :  Monadic  Second-Order  Logic  
 

 First-order  logic  extended  with  (quantified)  variables  
denoting  subsets  of  the  domains. 

  
 A  graph  G is given  by  the logical  structure   

     ( VG , edgG(.,.) ) = (vertices, adjacency relation) 

 Property  P is MSO expressible :  P(G)   ⇔   G  !=  ϕ 

 MSO  expressible  properties :   transitive closure,  properties  of 

paths, connectedness,  planarity  (via Kuratowski),   p-colorability. 
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 Examples :  G  is  3-colorable  : 
 

∃X ,Y ( X ∩ Y = ∅  ∧   
  ∀u,v { edg(u,v) ⇒    
    [(u ∈ X  ⇒  v ∉ X) ∧ (u ∈ Y ⇒  v ∉ Y) ∧  

    (u ∉ X ∪ Y  ⇒  v ∈ X ∪ Y)  ] 

      } )  
 
 

G  is  not  connected : 

∃Z ( ∃x ∈ Z  ∧  ∃y ∉ Z  ∧  (∀u,v (u ∈ Z  ∧  edg(u,v) ⇒ v ∈ Z)  ) 

 

  

Planarity  is  MSO-expressible  (no minor  K5  or  K3,3). 
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 Edge  quantifications  (MSO2  graph  properties) 

 
 

 If   G  =  ( VG , edgG(.,.) ), its incidence graph  is  defined as  
  Inc(G) := ( VG ∪ EG , incG(.,.) ) with    

  incG(u,e)  ⇔   u  is  the tail of  edge  e, 

  incG(e,u)  ⇔   u  is  the head of  edge  e.    (G is directed).   
 
  
 MSO  formulas  over Inc(G) can use  quantifications on edges and 

express more properties than those over G.  MSO2  graph properties  of G 

are expressed by MSO  formulas over Inc(G). 

 That  G  is isomorphic to some Kp,p  is  MSO2  expressible but not MSO 

expressible.    
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Definition 2 : Tree-decomposition, tree-width  (denoted by  twd(G)).  
 

          

 

 

 

 

 

 

 

 
 

 

 Graph  G                             a   decomposition   of  G  of  width  3 (= 4-1) 
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Definition 3 :  Clique-width       (denoted by  cwd(G)).  
 

 Defined from graph operations. Graphs are simple, directed or not, 

vertices are labelled  by  a,b,c, ... .  A  vertex  labelled by a is an  a-vertex. 
 

One  binary  operation:   disjoint  union  :   ⊕ 
 

Unary  operations:  edge  addition  denoted  by  Adda,b 
 

Adda,b (G)  is  G  augmented   

with  undirected edges  between  every  

a-vertex and  every  b-vertex. 

The  number  of  added edges  depends   

on  the  argument graph.             H = Adda,b (G) ; only 5  new edges added 

Directed edges are defined similarly. 
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Vertex  relabellings : 

Relaba         b(G)  is  G  with  every  a-vertex   is  made  into  a  b-vertex 

 

Basic graphs  :  a , a  vertex  labelled by a. 

 

The clique-width  of    G  (denoted by cwd(G)) is the smallest  k  such that    

G is  defined  by a  term  using  k   labels.  

 

 

Example : Cliques   have unbounded tree-width and   

clique-width  2. 

Kn  is   defined  by  tn  where  tn+1  =    

Relabb        a( Adda,b  (tn ⊕ b) )  
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Meta-theorems :  FPT  time  f(wd(G)).n    
  

  (1)  MSO    properties  of graphs of  bounded  cwd, 

  (2)  MSO2   properties  of graphs of  bounded  twd. 

    

 Notes: - MSO  expressible  ⇒   MSO2   expressible   and 

           bounded  twd   ⇒  bounded  cwd. 

(2) reduces to (1)   because  MSO2  on  G  = MSO  on  Inc(G)  

   and   cwd(Inc(G)) = O(twd(Inc(G))) = O(twd(G))  

   avoiding  the  exponential  jump  cwd(G) = 2O(twd(G))     

  
  Next : only  MSO  formulas  and  clique-width 
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Definition 4 :  Fly-automaton    (FA) 
 

A = < F, Q, δ, Out >  

F :  finite  or  countable (effective)  set of operations, 

Q :  finite or countable (effective)  set of states   (integers, pairs of integers, 

finite sets of integers: states can be encoded as finite words, integers in binary), 

Out : Q � D   (a  set of  finite  words), computable. 

δ : computable  (bottom-up)  transition  function 

Nondeterministic  case :  δ   is  finitely  multi-valued, which implies that  

determinization  works.     

An  FA defines  a  computable  function : T(F) � D , a  decidable  

property  if  D  =  {True, False}. 
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Theorem  [B.C & I.D.] :  For each MSO property P, one can 

construct a  single  infinite  FA  over F  that recognizes the terms t in 

T(F)  such that  P(G(t)) holds. 

Computation time is  f(k).n,   n = size of term, k = number of labels in t. 

  

Note : Graphs are handled  through  terms  or  labelled trees  

  (cf. tree-decompositions)  describing  them. 
 

 

Consequence : The same automaton (the same model-checking program)  

can  be  used  for  graphs  of  any  clique-width. 
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Proof  sketches  : To  check a  property  P(G),  for G = G(t),  t  ∈ T(F). 

 For each labelled graph G,  we  define  a  piece  of  information  q(G)  

that encodes properties  of  G  and values attached  to  G, so that: 

   (i) inductive  behaviour of  q :  for f  ∈  F  and  graphs  G,H: 

     q(f(G,H))  =  fq (q(G), q(H))  

   for  some  computable function  fq . 

  (ii) P(G)  can be decided from  q(G). 
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       Then  q(G(t/u))  is  computed  bottom-up  in  a  term  t,   for  each  

node  u. This  information  is  relative  to  the  graph  G(t/u)  (a  subgraph 

of  G ) defined  by  the  subterm   t/u  of  t   issued   from  u.   

  q(G(t/u))  is  a  state  of  a   finite  or  infinite  deterministic   

  bottom-up automaton. 
  

These  automata  formalize  some  form  of  dynamic programming. 

 

Constructions:  “Direct” for  a  well-understood  graph property  or  

“automatic”  from  an  MSO  formula. 
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 Computation  time  of  a  fly-automaton 
  

 F : all graph operations,   Fk : those using  labels 1, …, k. 

 On  term  t ∈ T(Fk)  defining  G(t)  with  n  vertices,  if  a  fly-automaton  

  takes  time  bounded by : 

  (k + n)c  �  it is a P-FA   (a   polynomial-time  FA), 

  f(k).nc  �    it is an FPT-FA, 

  a.ng(k)  �    it is an XP-FA     (XP : see  Downey and Fellows). 
 

 The associated  algorithm  is, respectively,  polynomial-time, FPT or 

XP for clique-width as parameter.          
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Direct  construction 1 : Connectedness. 

 

The state at node u is the set of  types (sets  of  labels)  of  the 

connected  components of  the  graph G(t/u).  For  k  labels (k = bound 

on clique-width),  the set  of  states  has  size  <  2 ^ (2 ^ k).   

  Proved  lower  bound  :  2 ^ (2 ^ k/2).   

�  Impossible  to  “compile”  the   automaton (i.e., to list the transitions) . 

Example  of  a  state   :  q = { {a}, {a,b}, {b,c,d}, {b,d,f } },  (a,b,c,d,f :  labels).  

Some  transitions :               

  Adda,c :    q             { {a,b,c,d}, {b,d,f } },                    

  Relaba       b: q            { {b}, {b,c,d}, {b,d,f } }   

  Transitions   for   ⊕ :  union  of  sets  of  types. 

Note : Also  state (p,p)  if  G(t/u) has   >  2 connected components,  all  of  type p. 
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In  a  fly-automaton,  states  and   transitions  are  computed  and not  

tabulated. We  can allow  fly-automata  with  infinitely  many  states  and 

with  outputs  :   numbers, finite sets of  tuples  of  numbers,  etc.  

 

 Example continued : For  computing  the  number  of  connected  

components,  we  use  states  such  as  : 

   q = { ({a}, 4 ), ({a,b}, 2), ( {b,c,d},2), ( {b,d,f },3) },   

   where 4, 2, 2, 3  are  the  numbers  of  connected  components  

   of  respective   types  {a}, {a,b}, {b,c,d}, {b,d,f }.  



 

23 

Direct  construction  2 : Regularity  (not  MSO)                                            

A state is  a  tuple  of counters  that  indicates, for each label a:                                            

  the number of a-vertices and                                                           

  the common degree of all a-vertices.                                              

The state is Error if two a-vertices have different degrees: the edge 

addition operations will add the same numbers of edges (some technical 

details are omitted) to these vertices, hence  the considered graph cannot  

be  regular. 
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Inductive construction  based on an MSO formula 

 

 Atomic formulas :  direct constructions (examples to come) 

 ¬ P (negation) :  FA  are  run deterministically, it suffices to exchange 

accepting/non-accepting states. 

 P ∧  Q, P  ∨  Q :  products of automata. 

 How to handle free variables and  ∃ X,Y.P(X,Y) ? 
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Terms  are  equipped  with  Booleans  that  encode  assignments  of  

vertex  sets  V1,…,Vn  to  the  free  set  variables  X1,…,Xn  of   MSO 

formulas   (formulas   are   written   without   first-order  variables): 

  1)  we   replace  in  F each  a   by  the nullary  symbol  

  (a, (w1,…,wn)), wi ∈ {0,1} :  we  get  F(n) (only  nullary symbols are  modified); 

  2)  a  term   s  in  T(F(n) )  encodes  a   term  t   in  T(F)  and  an  

 assignment  of  sets  V1,…,Vn   to  the  set  variables  X1,…,Xn :   

   if   u  is  an  occurrence  of  (a, (w1,..,wn)),  then    

   wi  =  1  if  and  only  if    u  ∈  Vi . 

  3)  s   is  denoted  by  t * (V1,…,Vn)    
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Example  

 

 

 

 

 

 

             

                         Graph  G(t)    

 

 

 

 

 

     

     

     Term   t      
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Example   (continued)  

 

 

 

 

 

               V1  =  {1,3,4},  V2  =  {2,3}   

 

 

 

   Term   t * (V1,V2)       
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 By  an  induction  on  ϕ,  we  construct  for  each  ϕ(X1,…,Xn)   an  FA  

A(ϕ(X1,…,Xn))  that  recognizes: 

L(ϕ(X1,…,Xn)) : =  { t * (V1,…,Vn) ∈ T(F(n) )  /  ( G( t ), V1,…,Vn )   =  ϕ } 

Quantifications:  Formulas   are   written   without   ∀  

  L(  ∃ Xn+1 . ϕ(X1, ..., Xn+1) )   = pr( L ( ϕ(X1, ..., Xn+1)  ) 

  A(  ∃ Xn+1 . ϕ(X1, ..., Xn+1) )   = pr( A ( ϕ(X1, ..., Xn+1)  ) 

 

where   pr  is  the  projection   that  eliminates   the  last  Boolean;         

�    a   non-deterministic   automaton. 
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Atomic  and   basic  formulas   :   

 

X1  ⊆  X2 ,    X1 = ∅ ,    Single(X1), 

 

Card p,q (X1) :  cardinality of  X1  is  =  p   mod.  q, 

 

Card < q (X1) :  cardinality of  X1  is   <  q. 

 

 

� Easy constructions of automata with  few  states :  

     respectively  2,  2,  3,  q,  q+1 states. 

 

Example :  for  X1  ⊆  X2 ,  the term  must  have  no  constant  (a, 10).
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Atomic  formula  :   edg(X1,X2)   (means :  X1  = { x }  ∧  X2 = { y }  ∧  edg(x, y)) 

 Vertex  labels  belong  to  a countable  set   C   of  labels.  

 States  :  0, Ok, a(1), a(2), ab, Error,      for a,b ∈   C , a  ≠  b 

Meaning  of  states  (at  node  u  of  t ; its subterm  t/u   defines  G(t/u)  ⊆  G(t) ).  

 0   : X1 = ∅  , X2 = ∅   

 Ok        Accepting   state :    X1 = {v}  , X2 = {w}  ,  edg(v,w)  in  G(t/u)   

 a(1) : X1 = {v}  , X2 = ∅ ,  v  has  label  a  in  G(t/u)   

 a(2)  : X1 = ∅  , X2 = {w}  ,  w  has  label  a  in  G(t/u)   

 ab  : X1 = {v}  , X2 = {w}  , v  has  label  a, w  has  label  b  (hence v ≠  w) 

             and  ¬edg(v,w)   in  G(t/u)    

 Error   : all  other  cases



 

31 

 Transition  rules  

 For  the  constants  based  on    a : 

 (a,00)  � 0  ;  (a,10) �  a(1)  ;  (a,01)  �  a(2)  ;    (a,11)  �  Error 

 

 For  the  binary  operation  ⊕:           ⊕                     r     

 (p,q,r  are  states)        p               q  

 

  If  p = 0  then  r := q  

  If  q = 0  then  r := p 

  If  p = a(1),  q =  b(2)  and  a  ≠  b   then   r  := ab 

  If  p = b(2),  q =  a(1)  and  a  ≠  b   then   r  := ab 

  Otherwise  r  : =  Error 
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 For  unary  operations   Adda,b       Adda,b                 r      

 

                        p     

  If  p = ab   then  r  :=  Ok   else  r  : =  p 

 

 For  unary  operations   Relaba         b  

  If   p = a(i) where   i = 1 or 2       then     r : = b(i)  

  If   p =  ac   where  c ≠ a  and  c  ≠  b    then     r : =  bc      

  If   p =  ca   where  c ≠ a  and  c  ≠  b   then     r : =  cb       

  If   p =  Error, 0, Ok,  c(i),  cd, dc   where   c ≠ a        then     r : = p   
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Theorem : For  each  sentence  ϕ,  the  infinite  fly-automaton  A(ϕ)  

accepts  in time  f(ϕ, k).  t    the terms  t  in  T(F)  such that  G(t)  =  ϕ    

where  k  is the  number of  labels  occurring in t. 
 

 It gives  a  fixed-parameter  linear  model-checking  algorithm  for  

input  t,  and  a  fixed-parameter  cubic  one  if  the  graph  has  to  be  

parsed.   

 The  parsing problem  is  another difficulty.  See  conclusion. 



 

34 

Other constructions (for computing values) 
 

The  number  of  satisfying assignments : # X.P(X). 

The  spectrum  SpX.P(X)  :  the  set  of  tuples  of  cardinalities of  the 

components of  the  tuples X  that  satisfy  P(X). 
 

The multispectrum  MSpX.P(X)  is  the corresponding  multiset  of  

tuples  of  SpX.P(X).   For X = X (one component):   

 the  set  of  pairs  (m ,i)  such  that  i  > 0  is   

 the  number  of  sets  X  of  cardinality  m  that satisfy P(X).  

 

For a  p-tuple X, a  multispectrum  is  a  function  [ 0,n ]p � [ 0,2 p.n ];  

it  can  be  encoded  in  size  O(n p.log(2 p.n) ) = O(n p+1). 

The minimum cardinality of  X satisfying  P(X).   
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Example: Number of accepting runs of a nondeterministic automat. 
 

Let  A = < F, Q, δ, Acc >  be  finite, nondeterministic. 

Then  #A := < F, [ Q � N ], δ#, Out >  

  [ Q � N ] = the set of total  functions :  Q � N 

 δ# is easy to define such that  the  state reached at position  

  u in the input term is the function  σ  such that  σ(q) is  

  the number of runs reaching q at  u. 

 Out(σ) is the sum of σ(q) for q in  Acc. 

#A is a fly-automaton obtained by a generic construction that 

extends  to  the case  of an  infinite  fly-automaton  A. 
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Some non-MSO examples 

 

(1)  Equitable  p-coloring  : 

 ∃X1,…,Xp (Partition(X1,…,Xp) ∧ Stable[X1] ∧...∧ Stable[Xp]  

      ∧  X1=…=Xi-1>  Xi =…=Xp> X1-1).    

 It  is  FPT  (for fixed p). 

 

      (2)  Partition into 2 regular graphs :  

 ∃X (Reg[X] ∧ Reg[Xc] ) 
 

 Reg[X] means that the subgraph induced on X is regular;  

 Xc is the complement of X.  It  is  XP. 
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(3) Minimizing  the  use  of  a  particular color:  this gives a “distance  

to  p-colorability” for a graph that p+1-colorable but not  

  p-colorable. 

 

In general, we can handle properties and functions of the forms 

  ∃X.P(X), MSp X.P(X), Sp X.P(X), # X.P(X)  

where P(X) is a Boolean combination of  properties  for which  

we have constructed FA  (Reg, NoCycle, Stable, etc…).  



 

38 

The  system  AUTOGRAPH (by I. Durand) 

 

 

 Fly-automata  for  basic graph properties : 

   Clique, Stable (no edge), Link(X,Y), NoCycle,  

   Connectedness, Regularity, Partition(X, Y, Z), etc… 

 and  functions : 

   #Link(X,Y)  (number of edges between X and Y), 

   Maximum degree.  
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 Procedures  for  combining fly-automata (combinations of descriptions) 
    

   product :  for  P ∧  Q, P ∨ Q,  g(α1 , …,  αp)  
 

   A  � A/X : for  P → P[X], (P in induced  subgraph on X) and 

   A  � A/(X ∩ Y) ∪ (Y ∩ Z)
c
    for relativization  to  set  terms. 

 

   image  automaton:  A � h(A) : in  the  transitions of  A, each  

   function symbol  f  is replaced by h(f) ;  h(A) is nondeterministic:  

   for  P(X) � ∃X.P(X)  
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Procedures  to  build automata  that compute functions: 
    

   #X.P(X) : the  number of  tuples  X  that satisfy P(X) in  

     the  input  term  (hence, in the associated  graph). 

   SpX.P(X) :  the set of  tuples of cardinalities of the  

      components of the X that  satisfy P(X). 

   MSpX.P(X) : the  corresponding multiset. 

   SetValX.α(X) /  P(X) :  the set of values of α(X)  

      for  the  tuples  X   that  satisfy  P(X). 

  For each case, a procedure transforms FA  for  P(X)  and  α(X) 

  into FA that compute the associated functions. (These transformations  

  do  not  depend  on P(X)  and  α(X).)  
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Conclusion and future  work  

 

  The  parsing problem : graphs  arising  from concrete problems are 

not random.  They usually  have  “natural” hierarchical  decompositions 

from which terms of small  tree-width or clique-width are not hard to 

construct.  This situation arises in compilation (flow-graphs of structured 

programs), in linguistics  and in chemistry.  

 

  It is thus interesting to develop specific parsing  algorithms for 

graph classes relevant to particular applications.  

 



 

42 

  With  fly-automata, we  get in most cases XP  or  FPT dynamic 

programming algorithms, that can be obtained  independently. 
 

  Fly-automata, can be quickly constructed from  logical  descriptions 

�  flexibility.  
 

  These constructions are implemented. Tests have been made 

mainly  for colorability  and  connectedness problems. 

 

  Next step : enumeration  algorithms  based  on  

fly-automata. 
 

  Thank you for suggesting interesting problems  that  could fit 

in this framework. 
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